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ABSTRACT

This  paper  is  a   study  of  torsion  theories  and  related

topics  such  as  pure  and  divisible  for  both  integral  domains

and  non-integral  domains.     Motivating  the  study  was  a

super  goal  of  investigating  the  existence  and  uniqueness

of  torsion-free  covering  modules  over  not  necessarily

integral  domains.     These  are   shown  to  exist  and  uniquely

in  the  first  section  of  the  paper  for  the  integral  domain

case.     Two  torsion  theories  for  not  necessarily  integral

domains  are  studied  in  the  second  and  third  sections.     In

the   second  section  Lawrence  Levy's   theory  is   studied  and

it  is  proved  that  the  set  of  torsion  elements  of  a  module

forms  a  submodule,   if  and  only  if  the  ring  has  a  right  quo-

tient  ring.     In  the  third  section  Akira  Hattori's  theory

is  studied  and  it  is  shown  that  the  two  theories  agree

where  both  are  clef ined  and  that  in  the  case  of  integral

domains  they  both  agree  with  the  usual  torsion  theory.     In

the  third  section  homology  is  used  considerably  in  both

definitions  and  proofs.
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Torsion  theory  as  well  as  the  related  properties  of

pure  and  divisible  are  studied  in  three  settings.    In  the
first  situation,.  commutative  integral  domains,  Enoch' s

Paper (2) ,   Torsion-Free Covering Modules,   is  Studied.     In

this  the  usual  definitions  of  torsion  and  divisible  are
used,  and  "torsion-free .covering  modules"  are  shown  to  exist

and  uniquely.    Here,  the  property  of  torsion  was  not  so

much  studied  as  was  an  interesting  result  of  the  property

in  the  integral  domain  situation.
In  the  second  situation,  rings  in  general,  the  usual

clef initions  as  in  the  integral  domain  case  yield  each

module  of  a  ling  torsion  unless  the  ring  has  no  zero  divisors.

This  leads  to  a  reformulation  of  clef initions  and  to  a  study

of  Levy's  paper   (5) ,

Non-Integral Domains .

Torsion-Free  ±±§ Divisible  Modules  9|Z£±

Taking  Levy's  definitions  of  torsion

and  divisible,  it  is  shown  that  the  torsion  elements  of  a

module  form  a  submodule  if  and  only  if  the  ring  has  a  quotient

ring .
In  the  third  situation,  rings  with  unit,  Hattori's  paper

(3), A  Foundation  of  Torsion Theor_¥ for  Modules  Over  General

E±Eg±  is  Studied.     In  this  paper  still  other  definitions  of
torsion  and  divisible  are  made  and  homology  is  used  extensively

in  developing  some  of  the  results  of  the  torsion  property.
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`  At  the  end  of  the  sections  on  Levy's  paper  and

Hattori's  paper  comparisons  of  the  theories  are  made.     This

is  to  say  that  Levy's  and  Hattori's  definitions  are  equiva-

lent  under  certain  conditions  and  that  both  theories  are
equivalent  to  the  usual  theory  in  the  integral  domain  case.

For  needed. definitions  and  results  in  homology,  Cartan

and  Eilenberg's   (1) ,   Homological  Algebra  and  Jans'    (4)

R_ings  ±p§  Homology  were  used  as  references.     For  properties
concerning  injectives  and.divisible  Cartan  and  Eilenberg   (I)

was  used.



Section  I,
Through  out  this  section,  unle:`s  otherwise  stated,  A

will  be  considered  to  be  a  cormutativ'e  integral  domain  with

identity  and  K  its  field  of  fractions.
Definition:    An  A-module  E  is  said  to  be  torsio_n-free

if  ax  =   0   for  cLeA,   xeE  implies  oi  =  0  or  x  =  0.

Definition:     A  submodule  EL  of  an  A-module  E  is  pure  in

E  if  aE]  =  orE  n  E]  for  all  oi€A.

osition  1.1: If  E  is  torsion-free,  a  Submodule  EL

of  E  is  pure  in  E  iff  E/E]  is  torsion-free.
Proof :   . Suppose  EL  is  pure  in  E,   Then  aEL  =  oiE  n  E]  for

all   CheA.      Now   if   a(e   +   EL)  -=   0,   then   ae   +  EL   =   0   SO   CheeEL.

Hence,   since   EL  pure   in  E  and  ole   e   GE  n  EL,   Ge   e   orEL   SO

ae.  =  Gel   for   Some  eL   e  EL.     Thus,   a(e  -eL)   =   0.     But

e  -eL  e  E  and  since  E  torsion-free  a  =  0  or  e  -eL  =  0.

that  is  a  =  0  or  e  =.eL  which  implies  a  =  0  or  eeEL.     Thus

a  =  0  or  e  +  EL  =  0.     Now  Suppose  if  E/EL  is  torsion-free,

then  for  each  a   e  A,   eeE,   a(e  +  EL)   =  0   implies  a  =  0  or

eeEL.     Clearly  oiE[  C aE  nEL  as  EL  is  an  A  submodule  of  .E.

Now  let  e   e   CiE  A EL,   then  e  =  oie'   for   some  e'   e  E  and   so

Cie'   +  E[  =  0  as  Ge'   e   E].     This   implies   ol(e'   .+  EL)   is   equal

to  0  and  hence,   a  =  0  or  e'   e  EL.     If  a  =  0  ae'   e  GEL  as
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0le'`=  a   e  E[.     If  e'  .C  EL,   ae'   e  aE]  and  so  in  either  case

ole'    €   OIEL,   so  Ge'   =   e   e   GEL.      Thus   olE  nE]c=CiE[   for   each

a  in  A.     So  aEL  =  oiE r  E]  and  E[  is  pure  in  E.

osition  1.2: The  union  of  a  chain  of  pure  sub-

modules  of  an  A-module  E  is  a  pure  submodule  of  E.
•®

Proof :     Let   (E^)^e].  be  a  family  of  pure  submodules

which  form  a  chain  indexed  by  an  appropriate  set  I"     Then

the  union  of  these  submodules  is  again  a  submodule  as  they

are  totally  ordered  by .inclusion.     NOW  if  e  e  aE  /l^UL  E^  ^eL

then  e  e  E^   for  some  A   e  L,   so  e  e  olE  nE^  and  since  E^  is

a  pure   submodule  of  E     e   €  OrE*     But  OlE^C  Ci   ^9LE   So

e     e  a  *¥LE}   s.o  CIE n  U E^  =  a  u E}  and  so  the  union  is  pure

inE.

osition  i.3: If  E2 C= EL  are  Submodules  of  E  such

that  E2  is  Pure  in  E  and  EL/E2  is  Pure  in  E/E2  then  E[  is

pure  in  E.                                                                                                              I

Proof :     If  E2  is  pure  in  E  -then  aE2  =  oiE  rE2  for  all

a  e  A®     And  also  if  EL/E2  is  Pure  in  E/E2  then  aE]/E2  =

aE/E2 n E[/E2  for  all  a  e  A.     Clearly  GE]C=a  E  flE[  so  let

Cie   €   E]   for   some  e   e   E  and   a   e  A.      Then  ae  +  E2   =  Gel  +  E2

for  Some  eL  e  E[,   and  so  Ge  -  Gel  e  E2  which  can  be  written

a(e  -e])   e  E2  but  Since  E2  Pure  in  Ei   a(e  -e])   =  a.e2

for  Some  e2  in  E2.     But  then  oie  =  a(e]  +  e2)   and  since

ei   +   e2   e   Elf   Ol(e]   +   e2)    €   olEL   SO   ole   e   CiE]   and  we   have

aE  nE] c=CiE[.      So  for  all  or   €  A,   GEL  =  QE  nE]  and  EL   is

pure   in  E®



osition  I.4: For  any  A-module  E  there  exists  a
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torsion-free  A-module  E[,   and  a  surjection  p:     E  +  EL,   Such

that  if  a  is  any  A-linear  mapping  from  E  into  a  torsion-

free  module  F  then  there  is  a  unique  linear  mapping  f :

EL  +  F  Such  that  f   o  P  =  a.     i.e.,   the  diagram:

commutes .

Proof :     I,et  EL  be  E/E'   where  E'   is  the  torsion  sub-

module  of  E.     (The  set  of  all  elements  in  E  that  are

annihilated  by  a  non-zero  element  of  A  is  a  submodule  of

E  and  E/E'   is  torsion  free.)     Let  p  be  the  connonical  sur-

jection  p:     E   +E/E'.     I.et   a  be  an  A-linear  mapping  from

E  into  a  torsion-free  module  F.     Then  define  f :     EL+    F  by

f (=)   =   ¢(x)    if  x,   x'    e  ¥.     There  exists   Ci   e  A   Ch  =   0   such

that   ol(x   -x')   =   0.      So   ¢(or(x  -x'))   =   0   =   a(a(x   -x'))   i

a[¢(x)   -a(x')]   but  since  F  torsion-free  and   a  ±  0   ¢(x)   -

¢(x')   =  0  and  hence,    ¢(x)   =   ¢(x')   and  the  map  is  well  de-

fined.     Show  f  is  homomorphism.     f  is  a  homomorphism  for

f(¥  +  F)   =   ¢(x  +  y)   =   ¢(x)   +   ¢(y)   =   f(¥)   +   f(F),   also   a  =   0

cxf(¥)    =    or¢(x)    =    ¢(ex)    =   f(ol.=)    =   f(Ci¥).      Clearly,    f   a   p   =  ¢.

Now  if  g  is  any  map  from  E]  +  F  such  that  g   a  p  =  ¢,   then

g   o   p(x)   =  g(¥)   =  a  (x)   =  f (¥)   and   so  g  =   f.

Now  we  will  clef ine  torsion-free  covering  module  and

proceed  to  develop  it.     Essentially,  we  wish  to  reverse  the
diagram  for  the  preceeding  proposition  and  the  positions  of
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of  E  and  EL.

Definition:    Given  a  module  E  then  a  torsion-free

module  T(E)   and  a  map  Y:     T(E)   +  I  will  be  called  respec-

tively  a  torsion-free  covering  module  of  E  and  a  torsion-

free  co.vering  of  E  if  they  satisfy  the  following:

(i)     Ker  Y  contains  no  non-trivial  pure  submodules  of

E.

(2)     if  Y:     F  +  E  is  a  linear  map  where  F  is  torsion-

free  then  the.re.  exists  a  linear  map  f :    F  +  I(E)

such  that  V   o  f  =  a.

This  is  to  say  that  the  diagram

HHidEi

commutes .

E

+¢

F

The  existence  and  uniqueness  of  both  of  these  are  proved

shortly  but  first  we  need  to  make  several  clef initions  and
I

establish  a  few  lemmas.

Definition:     A  linear  map  Y:     E'   +  E  will  be  said  to

have  the  torsion-free  factor  property  abbreviated   (TFF) ,

if  for  any  linear  mapping  ¢:    F  +  E,  where  F  is  torsion-

free,   there  exists  a  linear  map  f :     F  +  E'   such  that  Y  o  f  =  ¢.

i.e.,  the  diagram:

colrmutes .

I.emma  1.5:     If     :     E'  iE  has  the  torsion-free  factor

Property  and  EL  is  a  submodule  of  E  then  the  linear  mapping
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f :   ` Y-I(EL)   +  E[  Whic.h  agrees  with  Y  on  Y-1(E[)   has  the

torsion-free  factor  property.

Proof:      Define   f:      V-1(EL)   +  EL  by  f(X)   =   V(X).      I.et

F  be  a  torsion-free  module  and  ¢   a  linear.mapping,  ¢ :

F  +  E]®     Now  since  Y  had  the  torsion-free  factor  property

there  exis.ts  a  linear  mapping  g:     F  +  E'   such  that  Y   a  g  =  a.

Now  g/g-I   (Y-I(EL))   is  a   linear  map  g:     F  +  Y-1(EL)   Such

that  f  o  g/g-I   (Y-I(E]))   =  a  so  f  has  the  torsion-free

factor  property.

Definition:    An  A-module  M  is  said  to  be  divisible  if

for  each  in  e  M,   a  e  A`{O}   there  exists  m'   €  M  such  that

in   =   am,  ®

Remark  I.6:    For  integral  domains  injective  modules  are

divisible  modules.

Proof :     Let  M  be  an  injective  A-module  where  A  is  an

integral  domain.     i.e.,  given  any  module  E  and  a  submodule

E'   and  any  homomorphism  a:     E'   +  M  there  exists  a  homo-

morphism  f :     E  +  M  such  that  f   o   i  =  ¢  where  i  is  the  connoni-

cal  injection.     i.e.,  the  diagram:

0   +  E,   +  E

a+/i
M

commutes .

Lerma  I . 6 ' : In  order  that  a  module  M  be  injective  it

is  necessary  and  suff icient  that  for  each  lef t  ideal  A  of

A  and  each  homomorphism  f :     A  +  M  there  exists  an  element

g  €  M  such  that  f (})   =  ^g  for  all  A   e  A.
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Proof :     Suppose  M  injective,   then  the  homomorphism  f

has  an  extension  g:     A  +  M  and  f}  =  g}  =  g(1)   for  each

i  e  A,  and  the  conclusion  is  necessary.     To  prove  sufficiency

consider  a  module  E,   a  submodule  E' ,   and  a  homomorphism  f :

E'   +  E.     Consider  the  family  F  of  all  pairs   (EL,   f])   where

E]  is  a  submodule  of  E  containing  E'   and  f]:     E] +  E  is  an

extension  of  f .    We  introduce  a  partial  order  in  F  by

letting   (E[i   fL)   <   (E2t   f2)   if  EL C E2i   and  f2  is  an  ektension

of  f].     The  family  F  is.obviously  inductive  and  therefore  by

Zorn's  lemma  there  is  an  element   (Eo,   fo)   of  F  Which  is

maximal.     Now  Eo  =  E  since,   if  not,   suppose  x  e  E  and  X  ¢  E   .0
The  set  of  all  i  €  A  such  that  }x  e  Eo  forms  a  lef t  ideal
A  of  A  and  the  map  fo':     A  +  E  defined  by  fo'    (^)   =  fo   (}X)

is  a  homomorphism.*     There  is  therefore  an  element  g  e  M

such  that  fo(^x)   =  ^g  for  all  A   e  A.     Setting  fo' (e  +  ^x)   =

fo  e  +  ^gi   e  e  Eo,   ^  a  A,  yields  then  a  map  fo"   of  the  sub-

module  Eo  +    x,   of  E  which  is  an  extension  of  fo'.     Thus   .,

(Eof   fo)   is  not  maximal.

Continuing  with  the  proof  of  the  remark.     Let  M  be

an  injective  module  and  let  in  e  M,   A   €  A,   A  ±  0.     Consider

the  ideal  A  =  ^A.     Since  a^  =8^   implies  a  =  a  .(integral'

domain)   the  formula  f   (oi^)   =  am  defines  a  homomorphism  f :

A  +  M.     Since  M  is  injective  there  exist  by  the  preceeding

lemma  .a  m'   e  M  with  f (i)   =   ^m'   for  all   A   €   A.     Thus  in  =

*Show  fo'   is  well-defined  for  if  A.=8  then  fo' (i)   =  fo(^X)

and   fo'  (a)    =   fo(BX)    but   fo(^X)    =   fo(BX)    =   fo(^X-BX)    =   fo((A-a)X)    =

fo(OX)    =   fo(O)    =   0   SO   fo'(A)    =   fo'(B).
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f (A)`   =^m'   so  M  is  divisible.

Lemma   I.6: If  E  is  injective  then  Y:     E'   +  E  has

the  torsion-free  factor  property  if  and  only  if  for  every
linear  map  ¢:  F  +  E,  wher.e  F  is  torsion-free  and  injective

there  is  a  linear  mapping  f :     F  +  E'   such  that  Yo  f  =  a.

Proof :     By  definition  if  Y:    E'   +  E  has  the  torsion-

free  factor  property   (TFF)   then  for  every  linear  map  a:I

F  +  E  where  F  is  torsion-free  there  exists  a  linear  mapping

f :    F  +  E'   such  that  Yo  f  =  a.     If  F  is  torsion-free  and  in-

jective  it  is  still  torsion-free  and  the  existence  is  still
guaranteed  if  y  has  TFF.     Now  if  ¢:     F]  +  E  is  any  linear
mapping  where  FL  is  torsion-free,  then  since  F]  is  a  sub-

module  of  a  torsion-free  injective   (hence  divisible)  module

f   (Flo K) ,  and  since  E  is  injective,  there  exists  a  linear
mapping  a:     F  +  E  such  that  a/F]  =  ¢].     Then  by  hypothesis

there  exists  f :     F  +  E  such  that  Y   o  f  =¢  and  Y   o   (f/E[)   i,

¢1.

IJemma   I . 7 , : (Theorem  3.3  pg.   9)      Each  module  E  is  a

submodule  of  an  injective  module.

Proof :     For  each  module  E  we  shall  define  a  module

D(E)   containing  E  with  the  following  property:      (*)        If  A

is  a  left  ideal  of  A  and  f :     A  + I,  then  there  is  an  ele-

ment  g   e  D(E)   such  that  f (A)   =   ^g  for  all   i   e  A.     Let   ®  be

the  set  of  all  pairs   (A,  f )   formed  by  a  left  ideal  A  of  A

and  a  homomorphism  f :     A  +  E.     Let  F    be  the  free  module

generated  by  the  elements  of   a.     I.et  D(E)   be  the  quotient
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of  t`he  direct  sum  E  + .F¢  by  the  submodule  generated  by  the

elements

(f(i),   -i(A,    f))       (A,   f)    e   a,    A   e   A

The  mapping  e  +   (e,   o)   yields  a  homomorphism  ®:     E  +  D(E) .

If   ¢(e)   =   0   then   ¢(e)   =    (a,   o)   =   Zu±(f±(^±),   -^±(A±,   f±))    =

I(f±(u±,.  ^±),   -.u±^±(A±   f±)).      Therefore,    Zui}±(A±,   f±)   =   0

in  f®,  which  implies  e  =  0.     Thus  a   is  a  monomorphism  and,   by

identifying  e  and  ¢(e)   we  may  regard  E  as  a  submodule  of

D(E)  o

We  now  prove  that  D(E)   has  the  property   (*).     Let

f :     A  +  E  where   A  is  a  left  ideal  in  A.     Then   (A,   f)    €   ®.

Let  g  be  the  image  in  D(E)   of  the  element   (0,    (A,   f))   of

E   +  F®.      Then   for   each   ^   e   A,   f(^)   =   (f(^),   0)   =   (0,    ^(^,   f))

^g  as  required.

Now  let `Q be  the  least  infinite  ordinal  number  whose

cardinal  is  larger  than  that  of  the  ring  A.    We  define

Qoi(E)   for   0[  <  a  by  transfinite  induction  as  follows:
`'

QL!E)    =   D(E);    if   Ch  =    8  +   I   then   Qo,(E)    =   D(QB(E));    if   a  is

a  limiting  ordinal  then  Qa(E)   is  the  union  of  QB  with   8  <   tt.

We  now  prove  that  QQ(E)   is  injective.     Let  f :   A  +    QQ(E)

where  A  is  a  left  ideal  of  A.     Then  because  of  the  choice  of

Q  we  have   f(A)C  QCi(E)   for   some   Ci   <   a.     Then  by   (*)   there

is   an   element  g   e   D(Qa(E))    =  Qa+I(E)  C=  QQ(E)   With   f (A)    =   ^9

for  all   A   e  A.     Thus  by  lemma  I.6'   QQ(E)   is  injective.

I.erma   1.7: For  every  module  E  there  exists  a  torsion-

free  module  E'   and  a  linear  mapping  Y:     E'   +  E  having  TFF.

Proof :     Using  Lemma  I.5  and  the  preceeding  lemma  it

suff ices  to  assume  that  E  is  injective  since  if  it  were
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not`we  simply  find  an  injective  module  that  E  is  imbedded

in,  get  the  map  with  TFF,  and  then  restrict  the  map  to  E.

Then  using  Lemma  I.6  we  see  that  in  order  to  prove  that  a

linear  mapping  Y:     E'   +  E  has  TFF,   it  suffices  to  show

that  if  ¢:    F  +  E,  where..F  is  torsion  free  and  injective,

then  there  'is  a.  linear  mapping  f :    F  +  E'   such  that

V   a   f   =   a.

Now  every  torsion-free  injedtive  A-module  is  a  K

module  by  the  map  defined  by:     if  ^  e  A,   a^  =  a^  for  all

a  e  F,  F  a  torsion-free,  injective  A-module  and  if  }  =

^L^2  where  ^2  i  0  all/}2  =  b}]  where  b  is  such  that

a  =  b^2.    b  is  uniquely  determined  as  F  torsion-free  and

injective.    Also  every  K-module  is  the  direct  sum  of  a

family  of  submodules  isomorphic  to  K,   since,   if  M  is  a

K-module,   then  M  is  a  K  vector  space  and  hence  isomorphic

to  ^9L  K^Where  L  is  the  dimension  of  M.     From  what  we

have  said,   it  suffices  to  show  that  there  exists  E'  and  Y:
`'

E'   +  E,   Y  A-linear,   and  for  each  A-linear  map  ®':     M  +  E

there  exists  an  A.-linear  map  f':     M  +  E'   such  that  Y   a  f'   =

„     But  since  M  =   ®K    and  since  for  each  map  ¢:     ^9LK^  +  E
^eL

a(K^)^eL  =  A:L  ¢^(K„   it  Suffices  to  Show  that  for  each  a:

K    +  E  there  exists  an  A-linear  map  f':     K  +  E'   such  that
V   o   f'   =   ¢'   i.e.,   F   =  K   in   *,   =®K¢   in   *,   ¢   e   Horn   (K,   E).

Now  let  E'   =® K¢   and  ¢   e   Horn   (K,   E)   define  Y:     ®K¢   +  E,

a   e   Horn    (K,    E)    by   Y(k¢)    ¢   e   Horn   (K,    E)    =   I   a(K¢),    ¢   e   Horn    (K,   E).

Then  for  each  A-linear  map  ¢' :     K  +  I  there  exists  an  A-

linear  map  f':     K  +  E'.     Namely  define  f'    (k)   =   (k¢)

a   e   Horn   (K,   E)   where  k®   =   0,   ¢   ±  ¢'   and  k®   =  k.      Clearly
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V    ®.f'   =   ¢'   and  the  p.roof  is  completed.

Iierma   1.8:     If   y:     E'   +  E  has  TFF  and  N  is  a  submodule  of

E.'   contained  in  the  Kernel  of   Y,   then  the  induced  mapping

Y' ,   E'/N   +  E  has   TFF.

Clearly   Y'   exists  and  is  homomorphism.     Now  let

a:     F  +  E  be  any  A-linear  mapping  where  F  is  torsion-free.

Then  there  exists  an  A-I.inear  map  f :     F  +  E'   such  that  Y   o  f  =

I.et  f ' :    F  +  E'/N  be  the  composition  of  f  and  the  cononical

surjection.     f '   is  a  hombm6rphism.     Now  then  y'   o   f I   =  ¢

since   Y'    a   f'  (X))   =   Y'(f(x)+N)   =   Y(f(x)).      But   since

V   o   f   =   a,    V(f(X))    =      ¢(x).

Remark  i.9:     If  T:     E.   +  E  has  TFF  where  E'   is  torsion

free  and  N  is  a  maximal  element  among  the  pure  submodules

of  E'   contained  in  the  kernel  of  Y,  then  the  induced

mapping  Y'   of  E'/N  is  a  torsion-free  covering  of  E.     i.e.

(1)     Her  Y'   contains  no  nontrivial,  pure  submodule
I

OfE.

(2)     if  ¢:     F  +  E  is  a  linear  mapping  with  F

torsion-free,  there  exists  a  linear  map
f :     F  +  E'/N  such  that  Y'   o   f '   =  a.

Proof :     By  Lemma  I.8   Y'   has   TFF.     Her   Y'   contains  no  .

nontrivial,  pure  submodule  of  E'   since  if  E]  is  a  nontrivial

pure  submodule  of  E  contained  in  Ker  Y' ,   then  there  exists
a  submodule  E"  ±  N  of  E'   such  that.E"/N  i  E]  and  E"/N

is  pure  in  E'.     N  pure  in  E'   implies  E"  pure  in  E'   with
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®

N <  E"  a  contradiction  to  N  being  maximal  among  the  pure

submodules  of  E'   contained  in  the  Her  y.

Theorem  i.10:

ing.

Every  module  E  has  a  torsion-free  cover-

Proof :   . Every  module  E  has  a  torsion-free  module  E'

and  a  linear  mapping  Y:     E'   +  E  having  TFF  by  Lemma  I.7.

I.et  N  be  maximal  among  pure  submodules  of  E'   contained  in

Her  Y.     Then  the  induced  mapping  T.:     E'/N  +  E  has  TFF  by

Lemma  I.8  and  by  Remark  I.9  Y'   is  a  torsion-free  covering  -

of  E  and  E./N  is  a  torsion-free  covering  module  of  E.

Having  established  the  existence  we  would  want  torsion

free  coverings  to  be  unique.

Theorem  1.11:      If  Y':     E'   +  E  and  Y":     E"  +  E  are  two

torsion-free  coverings  of  E  and  f :    E'  +  E"  is  a  linear  map-

ping  such  that  Y"   o  f  =  Y',   then  f  is  an  isomorphism.
Proof :     Since  Y"  is  a  torsion-free  covering  of  E,  there

I

exists  a  linear  mapping  f:     E`   +  I"   such  that  V"   o  f  =  V'.

But  then  Her  f  is  'a  pure  submodule  of  E'   (since  E"  is

torsion-free)   which  is  contained  in  ker  VI     But  since  V'   is

a  torsion-free  covering,  ker  f  is  0.     Thus  f  is  a  monomorphism

and  so  card   (E')  :  card   (E").     Similarly  card   (E")   =    card

(E')   so  card   (E")   =  card   (E'),   that  is,  all  torsion-free

covering  modules  of  E  have  the  same  cardinality.     Thus

let  X  ba  a  set  containing  the  elements  of  E'   and  E"  and

such  that  card   (X)   >  card   (E') .     I.et  F  be  the  set  of  pairs

(Eo.   Vo) ,  Where  I     is  an  A-module  whose  elements  area
elements  of  X,   and  where  Y     is  a  linear  mapping  Eo  +  E,a
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which  is  a  torsion-free  covering  of  E.     Then   (E',   Y')   and

(E",   Y")   belong   to  F.

Partially  or.der  F  by  Setting   (Eot   Yo)  i   (Eii  Yi)/   if

Eo  is  a  Submodule  of  EL  and  Y]/Eo  =  Yo.     Then  F  has  maximal

elements  for  if  C  is  a  chain  of  F  let  E*  be  the  union  of
`?,

the  f irst  c:o±dinates  of  the  pairs  in  C  with  the  unique

structure  of  an  A-module  such  that  E    is  a  submodule  of  E*
a.

for  each   (Eoi   Yo)   in  C  and  let  Y*.:     E*  +  E  be  the  unique

linear  mapping  such  that. Y*/Eo  =  yo  for  each  Pair   (Eot   Yo)

inC.

Then  V*  clearly  has  the  torsion-free  factor  property.

If  N  is  a  pure  submodule  of  E*  contained  in  Kernel  V*

then  N      E    is  a  pure  submodule  of 'E    contained  in  Kernela,a
V     for  each   (Eo,   Vo)   in  C.     Thus  N'       E     =  0   for  each00
(Eoi   Yo)    in  C   S0  N  =   0.      Thus,    (E*.,   Y*)   belongs   to  F.

Clearly   (E*,   Y*)   is  an  upper.bound  of  C.

Thus  assume   (E*,   Y*)   is  a  maximal  element  of  F.     Now
`'

let  fi:     E*  +  E'   be  any  linear  mapping  such  that  Y'   o  f]  =  Y*®

By  previous  remarks  we  know  f[  is  a  monomorphism.     We  would

like  to  show  that  it  is  also  an  epimorphism.     Letyc= X  be

such  that  card   (y)   =  card   (E'   -f[   (E*))   and  such  that

E*fl   Y  =   ¢.

Such  aY is  available  since  card   (X)   >  card   (E')   =

card   (E*) .     I.et  Eo  =  E*  U  rand  let  g  be  a  bijection

Eo  +  E'   Such  that  g/E*  -  f[  and  g   (Y)   =  E'   -  f[   (E*) .

Then  E    can  be  made  uniquely  into  an  A-module  so  that  g0
becomes  an  isomorphism.     Letting  Eo  denote  this  module  we

`ii,I



see `that  E*  is  a  submodule  of  Eo4   that

an  element  of  F  and  Y'   o   g/E*  =  Y'   ®   f]

(E*.   V*)   :   (Eoi   ty'    o   9).      But    (E*,   V*)

of  F,   hence,       =  ¢,   so  E'   -f.    (E*)   =  aI
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(Eo,   V,      a   9)    is

=  Y*   so  that

is  a  maximal  element

Or  f I  is  an  epimor-

phism.     Similarly  any  linear  mapping  f2:     E*  +  E"  such  that
Y"   o   f2  =  Y*  is.an  epimorphism.     But  f   a   fL  is  such  a  mapping

since  Y"   a   f   a   fL  =  Y'   ®   fi  =  Y*,   hence,   f  o   f]  is  an  epi-

morphism  but  then  f  must  be  an  epimorphism.    But  f  is  a

monomorphism,   hence  an  isomorphism.

Theorem  1.12:     If  Y:     I(E)   +  E  is  a  torsion-free
N

covering  of  E  with  Kernel  G  then  the  Sequence  0  +  ExtA

(F,   G)   +  Extx   {F,   I(E))   +  Extg   (F,   I)   +  0  is  exact  if  F  is

torsion-free  and  if  n  >  I.

Proof:   . By  definition  of  I(E),   Horn   (F,   I(E))   +  Horn   (F,   E)   +  0

is  exact  whenever  F  is  torsion-free.     Choose  0  +  K  +  L  +  F  +  0

exact  With  L  a  free  module.     Then  Ext±   (K,_)  i  Ext±+I

(F-,_)   naturally.     (Every  free  module  is  projective

(I,  pg.   7) ,   and  if  0  +  A  +  P  +  8  +  0  is  exact  with  P  pro-

jective  then  Extn   (A,-  C)   =  Extn+i   (a,  C)   for  all  C  and  all
n   >   I    (4   pg.   47).

By  the  exact  sequence  in  the  lst  variable  of  Ext

Theorem   (4,  pg.   41)   if  0  +  A  +  a  +  D  +  0  is  exact,   it  in-

duces  the  exact  sequence

Extn-I   (A,   c)   +  Extn   (D,   c)   +  Extn   (8,   c)   +  Extn   (A,   c)   +

•  Extn+I   ,D,   C)    .    .    .
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So  we   have   0   +   Ham   .(F,   -G)    +   Horn   (F,   T(E))      9+

Horn  (F,  E)£:+±i~     ExtL   (F,  G)   +  Extl   (F,   Tiro   +

ExtL   (F,   E)   +   ...        Extn-1   (F,   E)   +  Extn   (F,   G)   +

Extn   (F,   I(E))   +  Ext      (F,   E)   +  Extn+I   (F,   G)   +   .   .    .
•n

Im  g  =  Ker   f,   but   since  Horn   ('E,   T(E))   +  Horn   (F,   E)i:   0

is   exact,   Im  g  =  Horn   (F,   E)   so  Ker  f  =  Horn   (F,   E)   so   Im

f  =  0   so  we  get  0  +  Ext]   (F,   G)   +  Ext]   (F,   I(E))   +  ExtL   (F,   E)   +

Ext2   (F,   G)   +   ....     But  Ext2   (F,   G)   i  ExtL   (K,   G)    so

we   have   0   +  ExtL   (F,   G)   +  ExtL   (F,   T(E))   +  ExtL   (F,   E)   +

ExtL    (K,   G)   +  ExtL   (K,   I(E))   +  ExtL   (K,   E).      But,

Horn   (K,   I(E))   +  Horn   (K,   E)   +  0   is  exact  as  K  torsion-free

so  we   get   0   +  ExtL   (K,   G)   +  ExtL   (K,   .T(E))   +  ExtL   (F,   E)   +   0.

By  induction  if   0  +  Extm   (F,   G)   +  Extm   (F,   T(E))   +

Extm   (F,  E)   +  0  is  exact  for  all  F  torsion-free,  and
in

in  <   n  -i,   then   0  +  Ext      (K,   G)   +  Extm   (K,   T(E))   +

Extm   (K,   E)   +  0  is  exact  for  all  in  <  n  -  I  since  K  is

torsion-free.     Now  by  isomorphism  0  +  Extn   (F,   G)   +

Extn   (F,   T(E))   +  Extn   (F,   E)   +  0  is  exact  and  the  theorem '

is  proved  for  all  n  >  I.

Lemma  I.13:     If  M  and  n  are  A-modules,   MCN,   i  the

connonical  injection  and  f   o  i  is  an  isomorphism  where

i:     M  +  N  f:     N  +  M,   then  N  =  i(M)  ®Ker   f.

proof :     i(in)  n  Ker  f  =  {0}   since  if  x  e  i(A)  r\  Ker  f

then  f (i(x))   =  0  so  x  =  0  since  an  isomorphism  is  an  in-

jection.
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`   Now  N  =  i(M)  ®K.er  i,   s.ince  clearly   {i(M)  ®Ker  f}  CN.

Now  let  x  e  N,   then  there  exists  y  e  M  such  that  f (x)   =  y

and  y  is  unique..    Now  f (i(y))   =  f (y)   =  y,   so  f (x)   -f (y)   =  0,

and  hence  f (x-y)   =  0  which  implies  that  x-y  e  Her  f .     This

means  that  there  exists  '2  e  Her  f  such  that  x  -y  =  z.

But  since  ¥  =  y.  +  z  and  since  y  e  i(M) ,   x  e  i(M)  ® Ker  f .

Since  if  also  x  =  y  +  z'  where  z'   a  Ker  f ,   then  y  +  z'   -

(y  +  z)   =  0.     So  z'   -z  =  0,   so  z'   =  .z  and  x  is  uniquely

represented.

Theorem  I.14:     If  S is  a  simple  A-module,  a.C A  is  the

annihilation  of  S  and  Y;.    I(S)   +  S  is  a  torsion-free  cover-

ing  of  S,   then  T(S)   is  a  direct  suinmand  of  any  torsion-free

module  F  containing  T(s)   suchT t.h:t aT(s)   = aF  n T(s) .

Proof :     Let  F  be  a  torsion-£iee 'module  containing

T(S)   such  that a.T(S)   =  aF'  n I(S) ,   I(S)   i  F,   i  connonical

injection  induces  a  map  I(S)/Z|T(S)   i  F/QF  which  is  an  in-

jection.     i.e.,   j:     I(S)/tlT(S)   +.F/:¢F  where  j(x  +aT(S))   i

x  +aF  is  a  function.     If  x  + aT(S)   =  y  +CIT(S)   then

x  -y   e c|T(s)   sO  x  -y  e a.F   sO  j(x-y  +  aT(s))   =   o  + a.I  =

jtx  +cLTtsi>    -jty  =aTts]]    sO   jtx  +aTts77   =   jty  +c2.Ttsi]   =

j(y  +  aLT(S)).     j   is  an  injection,   since  suppose  j(x  +aT(S)   =

o  +    F,   then  i(x)   + ar  =  o  +aF  sO  i(x)   =  x  e  CZF,   but

x   e  T(s)    so  x  e  aT(s)   so  x  + CIT(s)   =   0  +  aT(S) ,   so  Ker   j   =   0.

Since  S  simple,  any  x  e  S,  x  i  0,  generates  S.     Pick  x  i  0.

Define  Tx:     A  +  S  by  Tx(a)   =  ax,     this  is  a  homomorphism.

Ker  T(x)   =  {a  C  A`ax  =  0}  =  annihilation  of  S  = a.     A/a  i  S,

so  a.is  maximal,   so  A/a  is  a  field.    F/flF  is  an  A/a  module
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with  the  obvious  maps  and  definition  of  addition  so  F/aF
is  a  vector  space  ov:r  A/a.     Iiet  {X^}  i  e  L  be  a  basis  of

F/nFt   then  F/4F  =^9L   (A/a)A.     Define  ¢:     F/OF  +  S  as

follows:     let  {Z±}£   T  be  a  basis  of  I(S)/tlT(S)   as  an  A/a

vector  space.     EXpand   {j(Zi)}   Eel  into,{Xi}   ie|  U  K

a  basis  .of  ;/uF. as  an  A/a  vector  space.     I  n K  =  a.

X±  =  j(ZL)   i  e   I  and  a(x±)   =  0   if   i  e  K  where  Y  is  the  map

induced  by  V  and  the  connonical  map  p:     I(S)   +  T(S)/aT(S) ,

i.e.,  ¥(x  +  aT(S))   =  V(x);     Note   if  x  QT(S),   x  =   Za±y±  for

some   {a±}   e   a{y±}   e   T(S)    so  P(x   +  aT(S))    =   Y(x)    =   YZ(a±y±)    =

£Y(a±y±)   =  £a±  Y    (y±)   =  0  as  a±  €   afor  each  i.     Thus

letting  p  and  p'   denote  the  connonical  mapping  from  T(S)

into  T(S)/Z}T(S)   and  from  F  into  F/ELF  we  get  Y  =  I  a  p  =

¢i   o   p'    a   i  as  V  =  ¢L   o   j   o  p  as   i   o  p  =  p'    o   i,   i.   e.,

j   o   p(x)   =   j.(x   +AT(S))   =  x  +  OF.      p'    ®   i(x)   =   p'(x)   =

x   +  OF.      SO   Y   =   ¢L   o   P'    o   i.

But  since  F  is  torsion-free  there  exists  a  linear  mapping

f :     F  +  I(S)   such  that  y   a   f  =  ¢]   a  p'   so  Y   a   f   o   i  =

¢]   a   p'   o   i  =  Y,   hence  f   o   i  is  a-n  automorphism  of  T(S)   by

Theorem  I.11  so  that  i(T(S))   =  I(S)   is  a  direct  summand  of  F

by  Lerma  I.13.
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.

`  This  completes  this  section  of  the  paper.     So  far

it  has  been  proven  that  for  A  an  integral  domain  and  E

any  A-module,  th.ere  exists  a  torsion  free  covering  module

of  E  and  a  torsion-free  covering  of  E.    We  would  like  to

investigate  the  existence  of  similar  objects  for  rings  in

general .but. thi.s  is  beyond  the  scope  of  this  paper.
However,   in  order  to  make  such  an  investigation  it  would

first  be  necessary  to  define  in  a  somewhat  different  light
the  concepts  of  torsion.-free,  divisible,  and  pure  and  to

study  these  properties  for  rings  in  general.    This  is  what

will  be  done  to  some  extent  in  the  next  two  sections.
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Section  2.

Using  the  clef inition  of  torsion-free  modules  as

given  earlier  verbatum,  we  find  that  the  only  rings  with
torsion-free  modules  are  integral  domains.    That  is  if

in  e  M  a  right  module  over  a  ring  R  with  non-zero  elements

x,  y  such  that  xy  =  0,   then  mx  =  0  or   (mx)y  =  0  so  each

element  of  M  is  torsion  for  each  right  R-module  M.     There

does  not  exist  a  right  torsion-free  module  over  R.    Also

if  we  assume  that  R  is  Lot  commutative   (even  though  it  is

an  integral  domain)   we  do  not  know  that  the  torsion

elements  of  M,   T(M) ,   for  M  a  right  R-module  form  a  sub-

module .

In  this  section  we  shall  take  the  f ollowing  as  our

definition  of  torsion.    An  element  in  of  a  right  R-module

M  is  a  torsion  element  if  Md  =  0  for  some  regular  element

(some  non-zero  divisor)   d  of  R.     Using  this  definition,

which  is  the  same  as  the  usual  one  in  the  case  of  integral.

domains,  every  ring  is  a  torsion-free  module  over  itself .

Since  if  x  e  R  and  xd  =  0  f or  some  regular  element  d  then

x  =  0   (otherwise  d  not  regular) .     So  there  are  no  non-zero

torsion  elements.     In  a  later  theorem  it  will  -be  shown

under  what  conditions  torsion  submodules  exist.    We  shall

also  define  divisible  as  follows:    An  R-module  M  is  divisible

if  Md  =  M  for  every  regular  element  d  of  R.     The  condition

that  d  be  regular  is  necessary  since  otherwise  the  ring  of

quotients  would  not  be  divisible.
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.

Definition:    Let  R  and  S  be  rings  satisfying  the

following:     (I)   RC S,   (2)   every  regular  element  of  R

has  a  two-sided  inverse  in  S   (S  has  identity) ,   (3)   every

element  has  the  form  rd-I  for  properly  chosen  r,  d  in  R,

with  d  regular,  then  we  shall  call  S  a  right  quotient
ring  of  R.    If  3  is  replaced  by  a-i  r  then  S  is  a  left

quotient  ring  of  R.
Definition:     A  ring  R  is  said  to  have  the  common

multiple  property   (CM)   if -for  every  x,  d  iri  R  with  d

regular,  there  exists  dL,  y  in  R  with  d]  regular,  such

that  xdl  =  dy.

I.emma  2.1:     If  R  satisfies   (CM)   and  dx  =  d_   where  dI
and  dL  are  regular  then  x  is  regular.

Proof :   .  Suppose  y  e  R,   y  #  0,   xy  =  0,   then  d(xy)   =  0

so   (dx)   y  =   0,   so  dL  y  =   0,   So

tradiction.     Suppose  y  e  R,  y

not  regular,  a  con-

yx  =  0,  then  apply

(C.M)   to  d,  d],  we  obtain  i,   f ,  e  regular  such  that  de  =  d|f ,

then   (dx)   f  =  de  so  xf  =  e.     If  yx  =  a,   y(xf)   =   (yx)   f  =  ye  =  0,

and  e  is.  not  a  regular  contradiction.

Corollar 2.1':     If  d     and  d
12

are  regular  in  R  and,  R

has   (CM)   then  there  exists  cL,   c2  in  R  Such  that  d]  C]  i

d2   C2.

Proof :     c     is  regular  but  dL,  CL  regular  implies  dL  C.II
regular  and  by  lerma  2.I  c2  is  re.gular  So  given  d]i  d2

regular  there  exists  c],  c2  regular  Such  that  dL  C]  =  d2  C2.



•   Theorem   2.2:
®.

R  has  a  right  quotient  ring  if f  R  has

regular  elements  and  satisf ies   (CM) .

Proof :     If  R  has  a  right  quotient  ring  S  then  i  e  S

so  I  =  rd-i  for  r,  a  in  R,  d  regular.     So  R  has  regular

elements.     Now.let  x,  d  e  R  with  d  regular,   then  d  has  a

two-sided

x  =  yd-i,
-1

dy  dl    dl

exists  dl'
has    (CM).

then  R  has

inverse  in  S  and  x  e  S  so  d  -  x

for  some  y,  dL  in  R,  d]  regular.

'd-1  x  e  S  so  a-i
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-I
So  dd       x  d     =I

so  xd]  =  dy,   so  given  x,  a  e  R  d,  regular,   there

y  e  R  d]  regular  such  that  xdL  =  dy;   hence,   R

Now  if  R  has  regular  elements  and  satisf ies   (CM) ,.

a  right  ring  of  quotients  for  look  at  R  x  D.

D  =    regular  elements  of  R    and  clef ine  an  equivalence  re-

lation   (a,   b)   ±   (a,   d) ,   if  adL  =  CbL  where  dbL  =  bdL,   bL

regular  and  hence,  by  lemma  dL  regular.     Claim  that  this

is  independent  of  the  particular  bL,   dL  Which  give  the   (CM)

of  d  and  b.     For  if  db2  =  db2,  pick  e,   e2  regular  SO  that  b2

e2  =  bi  eL  then  bd2  e2  =  db2  e2  =  db]  e[  =  bd     e   .     Since  b
11.I

is  regular,  we  end  up  with  d2  e2  =  d]  e].     From  ad[  =  CbL

We  get  adz  e2  =  ad[  eL  =  Cb]  e]  =  Cb2  e2  and  the  regularity

of  e2  Permits  uS  to  Conclude  that  ad2  =  cb2.     We  now  see

that  the  relation  is  an  equivalence  relation.

reflexive (a,   b)   =   (a,   b)   as  ab  =  ab  and  bb  =  bb

symetric     if   (a,   b)   a   (c,   d)   then  adL  =  cb]  where

dbL  =  bd[  then  Cb]  =  ad],  Where  bd]  =  dbL

so    (a,   d)    =    (a,   b)-.
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`  transitive    if (a,   b)    =    (c,   d)   and    (a,   d)    =    (e,   f)

then  adL  =  CbL  Where  dbL  =  bd     andI
CfL  =  edL'   Where   fdL'   =  dfL.      Then  by

letting  fL'   =  dL  gL  and bl' =  dl'   92

where  g],   g2  Such  that  bL  9L  =  f]  92  We

have  afL'   =  ebL'   Where  fbL'   =  bf]'   Since

afL'   =  adL   gL   =  CbL   gL   =   CfL   92   =   edL   92   =

ebi  and  fbL'   =

bdl  91. =  bfl, .

fdi'   92  =  dfL  92  =  dbi  tgL  =

We  how  introduce  operations  +,   .,  which  render  R  x  D

a  ring.     Define  I  by   (a,   b)   I   (C,   d)   =   (adL  +  CbLi   dbL)

Where  db±  =  bdL  both  bL,  dL  regular.     Define  I  by   (a,  b)   I

(C,   a)   =   (Car,   bgi)   Where  ag]  =  daL  gL  regular.     These

operations  are.well  defined,  closed,  and  associative   (o,  d)

is  I identity.    I commutes  and  I is  distributive  over  I and

(d,  d)   is  I  identity.    Now  let  d  be  regular  in  R  then
a  =   (ddL,   dL)   for  any  dL  regular  in  R.     I  =   (d,  d)   for  any

regular  d  in  R  but   (ddL,   dL)    (dL,   ddL)   =   (d]t   d[)   =  I  and

(dLf   ddL)   I   (ddL,   d])   =   (ddL,   ddL)   =  I  as  dd]  regular  since

d,  d]  regular.     So  d  has  a  two-sided  inverse.     Let  x  e  S

then  x  =   (y,   d)   for  some  y  e  R,   d  regular  in  R.     But   (y,   d)   =

(y7   d)((ddL,   dL)  (dL,   ddL))     (y,   d)    =    I('y,   d)     (ddL,   dL)I

(dL,   ddL)   =  dd]aL,   dg]  Where  yg]  =  dial  and  gL  regular  so

dg]  regular  but   (dd]aL,   dg])   =   (d]ait   9])   =   (9g]t   gL)   =  F

but   (dL,   ddL)   =   (ddL,   dL)-I  =  a-I   so   (y,   d)   =  yd-1  y   e  R,

a  e  R,  d  regular  and  the  properties  of  a  right  ring  of
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quotients  are  satisfi.ed  by  identifying  x  e  R  with   (xd,  d)
for  any  d  regular  in  R®    Clearly  this  identification  is  an

injective  ring  h.omomorphism.

Theorem   2.3: If  R .is  a  ring  which  has  a  right  ring

of  quotients  S  and  a  right  ring  of  quotients  S'   then  S
•,

is  isomorphic  to  S' .

Proof :     Define  f :     S  +  S'   by  if  x  e  S,  x  =  rd-I  for

some  r,  d  e  R,  d  regular,  but  since  r,  a  e  R,  d  regular,

r,   d  and  d-I  e  S'   so  rd-I  e  S..     So  let  f(x)   =  f(rd-1)   =

rd-I  e  s' x  e  S.     f  is  a  function  since  if  x  =  X'   then

(r,   a)   =   (r',   d')   so  f(x)   =  f(x')   by  the  nondependence  of

the  equivalence  on  the  particular  regular  elements  chosen
_i

to  get  the  equivalence.     If  f (x)   =  0,  then  rd      =  0  so  x  =  0.
-1

f  is  i    . Clearly  f  is  onto  f (x  +  g)   =  f (rd-1  +  sdo-i)

f(r;   d)   +   (S,   do))   =  f (rdL  +  Sb]i   do  b])   Where  do  b]  =  dd]  =

(rd[  +  SbL)    (do  bL)-1  =  rd](do  b])-i  +  Sb](do  b])-1

rd](ddL)-I  +  Sb[(do  b])-1  =  rd-1  +  sdo-I  =  f(x)   +  f(y).      '

Lerma   2.4: Let  S  be  a  right  quotient  ring  of  R.     Then

I)     For  each  right  ideal  J*  of  S,  J*  =   (J*n  R)S

2)     If  J  and  K  a.re  right  ideals  of  R  whose  sum  is,

direct,   then   (J  +  K)S  =  JS  +  KS.

Proof :

I)     Suppose  J*  is  a  right  ideal  of  S.     I.et  x  e  J*,

then  x  =  rd-i  for  some  r,  a  in  R  with  d  regular

as  J* C S.     xy  e  J*  for  all  y  e  S,  d  e  S  so

xd  e  J*  so  r  e  J*  and  r  e  R  so  r  e  J* A  R,  d-I  e  S

sO  rd-i   t.*nRt   s  sO  x€    t.*nRts  sO  -*        t.*n  Rts.
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Now  let  x  e   (.J* A  R)S,   then  x  e  J*S  and  x  e  J*

as  J*  a  right  ideal  of  S,   so   (J* n R)S C J*  so

J*   =   (J*  n  R)S.

2)     Let  J  and  K  be  right  ideals  of  R  shose  sum  is

direct.     Clearly,    (J®K)   S  =  JS  +  KS.     Claim

JS.+  KS  is  direct.     That  is  JS  nKS  =  0.     If

x  e  JS  nKS  then  x  =  yzd-1,  y  e  ],   z,   d  e  R,
_1

d  regular.     And  X  =  y[i   ZLi   d[      i   yi        KJ   ZLJ   `

d]       R,   dL  regular,   yz  =  y2  for  Some  y2   e  J

and  yLi   ZL  =  y3   for   Some  y3   e   K  So  y2d-i  =

y3i  dL-1.     Now  given  d,  d],  there  exists  regular
a,   CL   e   R  Such  that  dc  =  dLi   CL   SO  y2  d-i  dc  =  y3t

dL-[t  .d]t   C]  and  y2  a  =  y3.   C].     But  y2C   €  J  as

j  a  right  ideal  and  a  €  R  and  y3C]i     K  as  K  a

right  ideal  of  R  So  y2C    =  y3c[  =  Oi   but  Since

Ci   C[  regular  y2  =  0  and  y3  =  0.     So  y,   z  and

yi.   Zi  =  0,   so  x  =  o.

Lemma   2.5: If  R  has  a  right  quotient  ring  S,  and  if

s±  =  r±,   dL-1,        es   (i  =   1 ,...,   n;   r±,   d±,   eR,   dL  regular)t

then  there  exists  elements  x±,   a  e  R,   such  that  s±  =  x±  d-1.

Proof :     If  n  =  I,   s[  =  r]d]-1  and  by  S  a  right  quotient

ring  if  n  =  2,   there  exists  CL,   C2  regular  Such  that  dLCL  =

d2C2   and   S     =   rLC[(dL   C])-Lj   S2   =   r2   C2    (d2   C2)-1
I

r2C2   (dic])-I  d  =  dLci;   Xi  =  rLCL;   X2  =  r2C2.     Suppose  for

i  =  k  there  exists   (x±)±=[and  d  such  that  s±  =  x±d-1  and  let
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SK+i  est   that  isi   SK+I  =  XK+I  d=:I,   then  there  exists  c,

CK+Lf   regular   in  R  Such  that  dc  =  dK+I  CK+1.     Then

d'   =  dc  =  dK+i  CK+i

si,xic, ,dc,-I  i=l'

rK+I   CK+I   (dc)-I.

Theorem  2.6:

and  x. 'i
K=  x±c±=L   and  rK+I   CK+I,

•..7   Ki    SK+I   =   rK+1   CK+1    (dK+I   CK+i)

And  by  induction  the  lemma  is  proved.

The  set  of  torsion  elements  of  each

right  R-module  forms  a  Submodule  if f  R  has  a  right  quotient

ring .

Proof :     Suppose  R  has  a  right  quotient  ring.     Let  M

be  a  right  R-module  and  T  the  set  of  torsion  elements  of  M.

0  e  T  as  R  has .a  right  quotient  ring  and  therefore  has

regular  element  a  and  od  =  0  so  0  torsion.     Now  if  t],   t2CT,

then  tL  d]  =  t2d2  =  0  for  Some  d[,   d2  eR  both  regular.     By

Corollary  2.1'   there  exists  cL,  c2  regular  in  R  such  that

dLC]   =  d2C2.      NOW   (tL   -t2)    (d]C[)   =   0   SO   t]   -t2   eT   So   T  ,

is  a  subgroup  of  M.     We  need  only  that  tx€T  for  each  XCR

with  teT.     If  xeR;   teT,   then  td  =  0  for  some  d  regular  in  R.

But  this  implies  by   (CM)   that  there  exists  d],  y  such  that

Xd]  =  dy  and   (tx)dL  =   (td)y  =  0   so  txeT  and  T  is  a   submodule.

Now  suppose  the  set  of  torsion  elements  of  each  right  R-module

forms  a  submodule.     Then  since  a  is  not  a  submodule  the  set

of  torsion  elements  of  each  right  R-module  is  non-empty.

Since  R  is  a  right  R-module  the  set  of  torsion  elements  of

R  is  non-empty  and  forms  a  submodule.     So  since  0  is  an

element  of  each  module,   0  is  a  torsion  element,   so  there
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®`

exists  deR,  d  regular  .such  that  Od  =  0.     So  R  has  regular

elements.     Let  x,   a  be  in    R  with  d  regular.     Now  dR/d2R

is  a  right  R-module.     If  dx  +  d2R  e  dR/d2R  then  a(-x)   +

d2R  is  its  inverse.     do  +` d2R  is  the  identity.      (dx  +  d2R)y  =

dxy  +  d2R  e  dR/d2R  as  xy:i.     Then  the  set  of  torsion  ele-

ments  of.  dR/d2R .forms  a  submodule.     rdow  a  +  d2R  is  a

torsion  element  as   (d  +  d2R)d2  =  dd2  +  d2R  =  d2  d  +  d2R  =

o  +  d2R  as  d2a   e.  d2R.     Hence,   for   any  x€R   (d   +  d2R)x  is.

also  a  torsion  element  b.y  .torsion  elements  being  a  submodule.

Hence,   for   some  regular  d',    (dx  +  d2R)d'   =  dxd.   +  d2R  =   o  +   .

d2R.     That  is  dxd'   e  d2R;   hence,   dxd'   =  d2y  for  some  yeR.

So  given  x,  deR,  a  regular,  there  exists  d',  y  such  that

xd'   =  dy  and  we  have  the   (CM) .     So  R  has  regular  elements

and  satisfies   (CM)   so  by  Theorem  2.2  R  has  a  right  quotient

ring .

osition  2.7: Iiet  R  have  a  right  quotient  ring  S

and  let  M  be  a  right  R-module.    .Then  M  is  an  R-submodule
''

of. some  S-module  iff  M  is  torsion-free.     When  the  condition

holds,   every  element  of  MS  has  the  form  md-1   (meM,   deR)   and

MS  =  M © RS  under  the  correspondence  MS  +  M © S.

Proof :     Suppose  M  is  torsion-free.     Then  the  map

in  +  in ®  1  is  an  R  homomorphism     from  M  +  M© S  as   S  is  both

a  right  and  left  R-module  so  M© S  is  a  right  R-module.

MOS  is  a  right  S-module  by  the  map   (mos)t  =   (most)

stes.     If  we  get  in  +  m©1,i-I  then  M  would  be  isomorphic

to  a  submodule  of  an  S-module.     I.et  F  be  the  free  abelian
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group  whose  generator:  are  the  ordered  pairs   (in,   s)   e  M  x  S,
and  let  f  be  the  map  of  F  onto  M ® S  given  by  f   (I  i  (mi,s±))   =

I  i m±© s±.     Then  Ker  f  is  generated  by  elements  of  the

form   (m[   +  m2i    S)    -(m]t   S)    -(m2t   S)i    (mJ   Si   +   S2)    -

(mi   SL)   -(in.   S2)i   and   (mr,   s)   -(in,   rs)    (reR).      If   for   some

n,   n©l.  =  0  then   (n,i)   e  Ker  f  so   (n,i)   =       :    i  (m±,   s±),
i=1

where  the  terms  on  the  right,  when  properly  grouped  are  among

the  generators  of  Her  f   (or  their  negatives) .    Let  d  be  a

common  rig

(n,   I)

n©l

t  denominator  for  the  elements  s±   (Lemma  2.5) ,
t

(mL,   x±d-1),   f(n,1)   =  f(i:I  i   (m±,   xLd-Ln

(m±©X±d     )   e  M©Rd-1  so  n©|  =  o  in  M®Rd-L®
-I

But  M©Rd-1  i .M© R  =  M     (as  additive  groups)   under  the

correspondence  m©rd-I  +  m©r  +  mr.     Hence,   0  =  n©l  =

n©dd-I  +  nd.     Since  d  is  invertible  i`n  S,  and  hence

regular  in  R  and  n  not  torsion,  n  =  0.     Hence,  M  is  con-

tained  isomorphically  in  M ©S  with  the  imbedding  in  +  in © 1.
`'

Now  if  M  is  contained  in  some  S-module  and  md  =   0   (meM,   d
-1

regular  in  R)   then  0  =  mdd      =  in  so  in  is  torsion-free.

Every  element  of  MS  has  the  form    m±  s±.     If  we  write

=  r±  d-I   (Lemma  2.5)   then  fm±  s±  =   (  m±  ri)d-I  which  is

the  form  md-I.    Note  that  this  does  not  imply  that  any

element  can  be  written  with  the  same  d  but  that  given  an

element,  such  a  a  can  be  found  for  that  element.     Similarly,

every  element  of  MOS  is  of  the  .form  m©rd-I  =  mr©d-1  =

m'  ©d-I.     Hence  by  the  elementary  properties  of  tensor



..

products,   the  map  in © s i ms  of  M ® S  onto  MS  is  well
defined.     It  is  I-i  since  m©d-I-0  =  md-I  implies  in

and  hence  in © d-I  =  o.

I,erma   2.75:

S-linear .

Any  R  linear  map  between  S  modules  is

.\
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Proof :     Let  M  and  N  be  S-modules  and  let  f  be  an

R-linear  map   from  M  to  N.     Then  f (m]  +  m2)   =  f (mL)   +  f (m2)

and  if  reR  then  f (rm)   =  rf (in) .     We  only  need  to  show  triat

if  ses  then  f (sin)   =  sf (in) :     If  ses  then  s  =  rd-1  for  some  d

regular  in  R  so  f (sin)   =  f (rd-±m)   =  rf (d-Lm)   as  M  is  an

S-module  so  d-Lm€M  and  f  is  R-linear.     Now  f (d-Lm)   =
-1

d-Ldf (a    in)   =  a-Lf (dd-Lm)   =  d-Lf (in)   as  den  and  M  is  R-linear

so  f (sin)   =  f (rd-Lm)   =  rd-1(f (in))   so  f  is  S-linear.

Corollar 2.7':     Let  R  have  a  right  quotient  ring  S,

let  M  and  N  be  R-submodules  of  right  S-modules,   and  let  f

be  an  R-homomorphism  of  M  into  N.     Then  f*:     MS  +  NS  defined

by-f*(ms)   =  f (in)s  extends  f  to  an  S-homomorphism  of  MS   into

NS.     If  f  is  one-to-one  or  onto,   so  is  f*.

Proof :     Since  if  M  is  a  right  R-module  then  M© S  is

a  right  S-module  by  the  map  M © S  x  S  +  M© S  defined  by
_1

if  in ®rodo-Les  then   (m®rodo-I) (rLdi     )   =  m©rLr2do-[d2-I

Where  rod2  =  dL-]r2  and  Since  if  f  is  an  R-linear  map  from

M  +  N  where  N  is  another  right  R-module  then  f G  ls  is  an

S-linear  Map(by  the  preceeding  Lerma)   from  M © S  +  N © S.

The  existence  of  f *  i  f ® 1s  is  guaranteed  as  by  the  theorem

MS  i  M © RS  and  NS i N © RS.     Now  if  f  is  onto,   that  i:
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M  + `N  +   0  is  exact  th;n  tens.oring  we  have  M © S  +  N  © S  +   0

and  f ©1s  hence  f*  is  onto.     Now  if  f  is  I-i  then  Ker  f  =  0

so  Ker  f*  =  0  as   if  f*(md-I)   =  0  then  f (in)d-1  =  o   so

f (in)   =   0,   in  =   0   so  md-i  =  0  and  f*   is  I-I.

Over  a  commutative  integral  domain  every  injective
•,

module  is  divisible,  every  torsion-free  divisible  module  is

injective.    We  need  to  find  out  what  happens  for  rings  in

general.     (In  particular  for  rings  with  right  rings  of
quotients)

Theorem   2.8: For  R  an  arbitrary  ring  with  identity,
every  injective  R-module  is  divisible.

Proof :     Let  M  be  an  injective  right  R-module,  m€M  and

deR,  d  regular.     The  correspondence  dr  +  mr  of  dR  into  M

is  well  defined  as  d  is  not  a  zero  divisor.     If  dr  =  dr'

then  d(r-r')   =  0  so  r  -r'   =  0  so  r  =  r'.     This  map  is  ob-

viously  an  R-homomorphism  and  therefore  it  can  be  extended
I

to  an  R-homomorphism  ¢  from  R  to  M  as  M  injective.     Suppose

¢(1)   =  in   .      Then  mid  =   a(1d)   -¢(dl)   =  ml  =  in  so   if  meMI
there  exists  mLeM  such  that  mid  =  in  so  M CMd  so  Md  =  M.

(Md  cM  as  M  an  R-module)   and  M  is  divisible.

Corollar 2 . 81 : Every  module  is  a  submodule  of  a  divi-

sible  module.

Proof :     Every  module  is  a  submodule  of  an  injective

module  by  Lemma  I.7'   and  by  the  previous  Theorem  every  in-

jective  module  is  divisible.
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`   Theorem  2.9:
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Let  R  have  right  quotient  ring  S.     The

following  are  equivalent:     1)     Every  torsion-free  divisible

right  R-module  i's  injective.     2)     S  is  semi-simple.      (Here

semi-simple  is  defin;a  as  in   (4.  pg.12)   and  is  equivalent

to  every  S-module  is  injective.)

Pr6of :     Suppose  I)   and  let  N  be  an  S-module.     Then  by

2.7  M  is  a  torsion-free  R-module.     Now  since  M  is  an  S,

module,   for  any  meM,   deR  d  regular  md-LeM  so  in  =  mid  for

some  m]eM  and  M  =  Md  so`M.is  divisible.     Hence  by  hypothesis

M  is  R  injective.     Now  let  N,   P  be  two  S-modules  and  let

a  be  such  that  0  +  N  a  P  is  exact  and  let  8  be  such  that
a

OB+#¢+/,P¢

Since  N  and  P  are  S-modules  they  are  R-modules  and  or  and  8

are  R-homomo.rphisms,   so  there  exists  an  R-homomorphism  a:

P  +  M  such  that  the  diagram  commutes  since  M  is  R  injective.

By  Lemma   2.75   ¢   is   S-linear.

•      Hence  M  is  injective  and  since  M  arbitrary  every  S-

module  is  injective  so  S  is  semi-simple.     Suppose  2)   that

is  suppose  S  is  semi-simple.     Then  every  S-module  is  injective.

Let  M  be  a  torsion-free  divisible  R-module  and  let  J  be  an

R  ideal  and  f  an  R-homomorphism  from  J  to  M.     Now  J  is  a

torsion-free  R-module;   hence,  a  submodule  of  an  S-module

and  so  is  M  by  Proposition  2.7.     So  f  can  be  extended  to  an

S  homoinorphism  f *  of  JS  +  MS  =  M  as  M  divisible  and  torsion-

free;  therefore,  an  S-module.     Trien  since  JS  i  S  is  injective

where  a  is  the  natural  map  and  M  is  injective  by  hypothesis

since  it  is  an  S-module,   there  exists  a  map  f '  which  makes
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.

the .following  diagram  commute.

JS!Sfi/:'
The  restriction  of  f I  to  R  satisfies  the  requirements  for

M  to  be .R  ±njective.

The  following  theorem  is  given  without  proof :

Theorem  2.10: Iiet  R  have  a  two-sided  quotient  ring  S.

Then  the  following  are  equivalent.

i)     Every  divisible  right  R-module  is  injective.

2)     S  is  semi-simple  and  R  is  right  hereditary.

Iielrma   2.11: Let  R  have  a  right  quotient  ring  S.    If

every  finitely-generated,  torsion-free,  right  R-module  is  a
submodLle  of  a  f ree  module  then  every  f initely  generated  right

S-module  is  a  submodule  of  a  free  S-module.

n
Proof :     Let  M  =  i:1  m±  S  be  a  finitely  generated  S-

module.     Then  M  is  torsion-free  as  an  R-module,  since  every

S-module  is  torsion-free  as  both  an  R  and  S  module.

(Regular  elements  of  both  R  and  S  are  invertible  in  S)     I.et
nML  =  ±=]m±R.     Since  every  finitely  generated  torsion-free

right  R-module  is  a  submodule  of  a  free  module.     ML  is  a

submodule  of  a  free  R-module  M2.     Consider  M2  to  be  a

Submodule  of  M2©RS   (which  by  proposition  2.7  then  equals

M2S.)     Since  R©RS  i  S,  and  Since  tensor  products  preserve

direct  Sums,   M2S_is  a  free  S-module  containing  M  =  M]S.
_nn

MLS  =  ML  6yg  =  i:Lm±R©S  =  i:Lm±(Res)   =
i:|mis  =  M

M2  i ® RorM2  ©S  a © RdL  © S  i  6XRQ © S)   i © Sa.
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(TF)`  represents  every  finitely  generated  torsion-free  right
module  is  a  submodule  of  a  free  module.

Theorem  2.12: Let  R  have  a  two  sided  quotient  ring  S.

Then  R  satisfies   (TF)   if  and  only  if  every  finitely  generated

right  S-module  is  a  submodule  of  a  free  S-module.

Proof :     If  R  satisfies   (TF)   then  every  funitely  generated

right  S-module  is  a  submodule  of  a  free  S-module  by  Iiemma

2.11  and  if  R  has  two-sided  quotient  ring  then  it  has  a

right  quotient  ring.    We  need  to  prove  if  every  finitely

generated  right  S-module  is  a  submodule  of  a  free  S-module
then  R  satisfies   (TF).    Every  S-module  is  torsion-free  as

both  an  R  and  an  S-module.     So  the  theorem  could  read  R

satisfies   (TF)   iff  S  satisfies   (TF).     So  let  M  =    E  in  R
i±|i

be  a  finitely  generated  torsion-free  right  R-module.    Con-

sider  M  to  be  a submodule  of  M ©RS.      (Proposition  2.7)
n

Then  MS  =   i:Lm±S   (as   in  Lemma   2.11)
iglmiR©S  =

±=[m±(R©RS)   =  i;]m±S  is  a  finitely  generated  S-module
and  hence  is  a  submodule  of  a  free  S-module  by  hypothesis.

Since  each  element  has  finite  support  each  of  the  in  's  cani
be  written  as  a  combination  of  a  f inite  number  of  basis

elements  of  this  free  module,  we  can  assume  that  the  free

module  is  finitely  generated.     Suppose  the  free  module  is

isomorphic  to  the  direct  sum  S(K)   of  K  copies  of  S.     In  the

S-isomorphism  MS+S(K)   suppose  in  -(s   ,   s   ,...,   s  ) .

Then  M
n

EmR=     Ii=|  i       i=|
il2K

(Si   t   S2±i    ...t   SKI)   R.      Let  a  be  a
i
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common  left  denominator  for  the  nk  elements  s±   .     That  is,

-I
let  sj±  =  d  -rj±  with  d,   rj±e  R  by  Lemma  2.5.     Then

M  =    E   (d-LrL± .....   a-Lrk±)   R  =  LEI(ri± .....   rk±)   R  CR("
i=|

a  free  R-module.
•,

This  compleres  section  2.     In  this  section  it  has  been

shown  that  the  torsion  elements  of  a  right  R-module  form  a

submodule  if  and  only  if  R  has  a  right  quotient  ring.    Also

if  R  has  a  right  quotient  ring  S  then  S  is  semi-simple  if  .   .

and  only  if  every  torsion-free  divisible  right  R-module  is

injective.     Toward  the  end  of  this  section  it  was  also  shown

that  if  R  has  a  two-sided  quotient  ring  S,  R  satisfied   (TF)

if  and  only  if  S  did.
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Section  3.

In  the  following  work  yet  another  torsion  theory  will

be  studied  with  such  questions  in  mind  as,  is  the  torsion

freeness  of  a  module  equivalent  to  the  vanishing  of  its

torsion  part,  is  it  possible  to  divide  any  module  into

its  torsion-free  and  torsion  parts,  and  under  what  con-

ditions  is  the  torsion-free  as  defined  in  this  section
equivalent  to  the  torsion  theories  of  the  other  two  set;tions.

In  the  following,  let  R  be  a  ring  with  unit  i,  and

let  A  be  an  R-left  module  on  which  I  acts  as  the  identity.

If  r(A)   denotes  the  right  ideal  of  R  consisting  of  the

right  annihilator  of  ^eR,  then  the  subset  r(i)A  is  so  to

speak  a  priori  torsion  with  respect  to  }.

Definition:    A  is  called  torsion-free  if ,  for  every

^eR,   ^a  =   0   implies     aer(A)A.

',

If  i(A)  denotes  the  left  ideal  of  left  annihilators
of  A  then  we  have  the  following  definition.

Definition:    A  is  said  to  be  divisible  if  for  every

^eR  i(i)   a  =  0  implies  a€^A.     Similarly  we  could  define

these  for  right  modules.

Consider  the  sequence  R  A    R  i  R  where  the  f irst

arrow  is  the  left  multiplication  by  ^,    the  second  the

connonical  injection.     Tensoring  with  A  over  R  yields

A±®hR   ®A  ±9'A  where  ^ © I  is  an  epimorphism  with  Kernel

r(A)A  since  0  +  r(})   i  R  +  ^R  +  0   is  ex;ct  so
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rw  ©A  +  R©A  ^¥l^.R ©A  +  0   is  exact  SO  Ker  ^X|A  =

Im  r(A)  ©A  in  R  ©A  =  A  =  r(^)   A.     The  composed  map

(i © 1)   (A © 1)  .is  identified  with  left  multiplication
by  ^  in  A.

Tor]   (R/}R,  A)   is  trie  Kernel  of  i©1A  since

0  +  ^R ;  R +  RAr  +   0  is  exact  and  from  the  properties  of

tor  we  get  the  following  exact  +  Tor](}R,  A)  +  Tor](R,  A)  +

TorL(RAR,   A)   +  ^R©A  +   R©A  +   R.AR©A  and  Tor](R,   A)   =   0

as  R  projective  and  R©A.=  A  so  we  have  the  following

exact  0  +  Tor[(R^R,  A)  i  }R©A  ±X}A  A  so  Tor](R/„  A)   =

Im  f  =  Ker  i©1A  from  the  exactness.

So  TorL(R/}R,   A)   ~   Ker  i©lA.     Since  A  h9'   ^R©A  f9   A

where.  h®|   is  a. surjection.     A/Ker  }®  a. ^R ®A  so

A/r(})A  a   ^R©A  so  Tor[(R/^R,   A)   =  Her  i ©lAC= A/r(A)A.

Ker   i ©/A  =.  {aeA|^a  =   O}/r(A)A  as

a  +  r(A)   A  +  A   x  a  +  }a

A/r(A)   A  +  ^R©A  +  A
'

^(.a  +  r(A)A)   =   0   iffja  =   0   so  Tor   (R/^R,   A)   a   {aeA|^a  =

O}/r(A)A  and  hence

osition  3.1: A  is  torsion  free  iff  TorL(R/^R,   A)   =  0

for  every  ^eR.

Proof :     If  Tor](R/^R,  A)   =  0  for  every  ^eR  then

^cR ±{aeA|^a  =   O}/r.(A)   A  =   0   so  if   aeA   such  that  ^a  =   0

then  a  e  r(A)A  and  by  definition  A  is  torsion-free.     Now

if  A  is  torsion-free  then{aeA.|^a -=  0}/r(A)   A'=  0  as  torsion-

free  implies  for  each  ^eR  we  have  a  e  r(A)A  whenever  ^a  =  0.

SO  TorL(R^R,   A)   =   {a€A|^a  =   O}/r(»   A  =   0.     Also
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Extl    (R/R},   A)   =   {a€A.|1(`Wa   =   O}^A.      0   +   R^   +   R  +   R/R^   +   0   is

exact  and  from  the  properties  of  Ext  we  have  0  +  Horn   (R/R^,  A)+

Horn   (R,   A)    +   Horn   (R^,   A)   +   ExtL    (R/R^,   A)    +   ExtL    (R,   A)    +    .... a

But  Horn   (R,   A)   =  A  and  ExtL   (R,   A)   =   0   as  R  projective   so

we   have   0   +  Horn   (R/R^,   A).   +  A  £   Horn   (R^,   A)      9  ExtL    (R/R^,   A)+

0   exact®      So   ExtL    (R/R^,   A)    =   Horn   (R^,   A) =   Horn   (R^,   A)  .
Ker9

But   0  +  1(A)   +  R  +  R^  +  0   is  exact,   so  we  get  0  +

Horn    (R^,    A)    5.   Horn

Imf

(R,   A)    9'Hom    (I(A),   A)    +    ....       So

Horn   (R^,   A)    s   Im   f I    =   K-er   g'   =   {aeA|1(A)    a   =   0}   as

Horn   (R,   A)   =   A.      If   f   e   Horn   (R,   A)   then   f (1)   =   af   and   f   is

determined  by  af,   i.e.,  f(x)   =  xaf  g' (f)   just  restricts

f  to  i(^) .     That  is  g' (f)  (x)   =  xaf ,   x  e   1(i)   so  Ker  g'   =

{f   e  Horn   (R,   A)  |f  restricted  to  1(W   =  0}   =   {af   e  AIxaf  =  0

for   all   x   e   I(^)}   =   {acA|1(A)a  =   0}.
f

Now   Im  f   in  the   sequence   0   +  Horn   (R/R^,   A)   +  Horn   (R^,   A)   9

ExtL    (R/R^,   A)   +   0   =   ^A  as,   for   a€A   f (a)   =  g   e   Horn   (R^,   A)

such  that  g(r^)   =   (r^)a  =  r(^a)   for  all  r€R.     Now  f (a)   can

be  identified  with  ^a  in  the  same  manner  as  Horn   (R,  A)   can

be  identified  with  A.     So  ExtL   (R/R^,   A)   =   Horn

Horn   (R/R^,   A)

(R^'    A)    =
Ker9

a   {acA|l(A)a   =   O}/^A  and   hence
Imf

1
Proposition  3.1':     A  is  divisible  iff  Ext     (R/R},  A)   =  0

for  every  xeR.

Definition:    A  left  R  module  M  is  said  to  be  flat  if

whenever  K:     A  +  8  is   injective`  then  K©l:    'A©M  +  B©M

is  injective.
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i)   A  flat  module  A  is  always  torsion-

free;   2)   An  injective  module  A  is  always  divisible;   3)   If

every  left  ideal  of  R  is  principal,  then  a  divisible
module  A  is  injective.

Proof  I) :     Let  A  be  a  flat  R-module,   then  0

TorL   (R/^R,  A)   +  ^R ©A  f9A  A  is  exact  but_-

exa:t  so  0  +  ^R © A  j9A  R ©A  =  A  is  exact  So  Ker  i © lA  =  0

and  since  Tor]   (R/^R,   A)   a   Ker  i©1A,   Tor]   (R/^R,   A)   =  0

and  by  Proposition  3.I,  A  is  torsion-free.

Comment:     Clearly  if  projective  then  flat,   so  pro-

jective  is  torsion-free.   2)   Let  A  be  an  injective  module,
then  ExtL   (R/R^,   A)   =   0   since   0  +  R^   +  R  +  R/R^  +   0   is

exact   so   0   +   Horn   (R/R^,   A)    +   Horn   (R,   A)   5.     Horn   (R^,   A)   +

ExtL    (R/R},   A)   +   ExtL    (R,   A)   =   0.      But   Horn   ( ...,   A)      A   in-

jective  is  an  exact  contravariant  functor   (4,  page  39)   so
0   +   Horn   (R/R^,   A)   +   Horn   (R,   A)      i'   Horn   (R^,   A)    +   0   so   j'

is  a  surjection  and  we  have  0  +  ExtL   (R/R^,  A)   +  0  exact   `

a;d  so  ExtL   (R/R^,  A)   =  0  and  A  is  divisible  by  Proposi-

tion  3.1'.     3)     Let  A  be  a  divisible  R-module.     Then  if

for  each  left  ideal  L  and  each  map  f  €  Horn   (L,  A)   there

exists  a  map  f '   e  Horn   (R,  A)   such  that  f '   is  an  extension

of  f  then  A  is  injective.     Let  L  be  a  left  ideal.     Then  we

have  the  exact  sequence  0  +  L    i  R  i  R/L  +  0.     Horn  across

with  A  We   get   0   +   Horn   (R/I,,   A)   +   Horn   (R,   A)      i'   Horn   (L,   A)+
I

Ext     (R/L,   A)   =  0.     We  have  the  0  on  the  right  because  L

is  principal  and  is  therefore  R^  for  some  ^eR  and  A  is



37

divisibleo      Hence   Horn.  (R,   A)      S'   Horn   (L,   A)   +   0   and  we

get  i'   a  surjection.     That  is,   for  each  f   e  Horn   (L,  A)

there  exists  f '   i  Horn   (R,  A)   such  that  f '   is  an  extension

of  f  so  A  is  injective.

Definition:     An  extension  of  R-modules   (*)

0  +  A  9  a  +  C  +  0   (exact)   is  said  to  be  pure  if  it  has

one  of  the  two  following  equivalent  properties.

i)     A         8=   ^Afor  every  ^eR.

2)     If  ^C  =  0  for  ;one  eec,   then  there  exists  beB

such  that  a(b)   =  C  and  ^b  =   0.

(in   (1)   A  is  identified  with  aA      8.)     These  are  equivalent

respectively  to
1')     R/^R© A  +  R/^R ©8  is  a  monomorphism  for  every

}eR.

2')      Horn   (R/R^,   8)   +  Horn   (R/R},   C)    is   an   epimorphism

for  every  ^eR.

'
Proof :     i)   +  2)      Suppose  A       ^8  =    A  for  all  ^eR.

If   ^b   €   Ker   8   =  A.,   ^b  =  Ol(^a)    for   some   aeA,   so   if   ^c   =   0

then  pick  b€B   such  that   a(b)   =  a.     Now  a(^b)   =   ^B(b)   =

^c  =   0,   so   ^b  =  c"^a)    for   some  a€A.     Consider   A(b  -tt(a))   =

^b   -A(ova)    =   ^b   -ct(^a)    =   ^b   -^b   =   0,    a(b   -ol(a))    =

B(b)    -B(Ci(a))   =   a   -0   =   a   as  A  =  Ker   a.      So   there   exists

bo   e   8   Such  that   A(bo)   =   0   and   B(bo)   =  c   namely   (b   -ol(a))  .

2)   +  1) :     Suppose   ^C  =  0   for  c€C.  implies  there  exists

some  beB  such  that     b  =   0  and   a(b)  .=  c.   .  Clearly   ^A       A       ^8

as  A  a  submodule  of  8.     I.et  Ci(a)   e^B,   that  is  c"a)   =   }b  for
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some   beB,   then   B(a(a))   =   B(^b)   =   ^B(b)   =   ^c   =   0   for   some

a  in  C.     So  by  hypothesis  there  exists  b'e  8  such  that

^b'   =   0   and   a(b')   =  c.      Now   (b-b')e   Ker   8   as   B(b-b')   =

a(b)   -a(b')   =   a   -a   =   0   so  b   -b'   e  A.      So   A(b-b')    e^A

but  i(b-b')   =  ^b  -^b'   =..^b  as   ^b'   =   0   so  ^b   e^A  and

A        ^B   =   ^A.so   A        ^B   =   ^A.

1')   +  1):     If  R/^R©A  +  R^R`©B  is  a  monomorphism

for  every  ^€R,   then  since  R/^R©A  =  A/^A  as  0  +  ^R  i-R  £  R/^R+

o  exact  gives  ^R ©A  ±gr  R©A  =  A  ®9[  R/^R©A  +  o  exact

where  i  is  the  connonical  injection,  a  the  connonical

surjection.     So  R/^R©A  =  A/ker  ¢gr  =  A/Im  j®.     Im  j©1  =

^A  as  j®:     ^R©A  +  A  by  i®   (^r ®a)   =  ira  =  ^a',

a'   =  ra,   that  is   Im   (jGEL)   =   ^R  ©A  =   ^RA  =   ^A  as   ^RAC=  ^A

and  R  having  unit  gives   ^RA  =  }A.     So  R^R©A  =  A/^A  and

similarly  R/^R©B  =  8/^8.     So  0  +  A/^A  +  a/^8  is  exact

for  each  ^eR.     So  if  acA,   a  €   }8  then  a  +  ^8  =  0.     So

since  a  +  ^b  is  image  of  a  +  ^A,   a  +  ^A  must  be  0  also,   so

a  €   ^A  so  A  n ^8  =  ^A  for  all  ^eR  as  ^A c=A  n ^8  clearly.

1)   +  1`) :     If  A  n ^8  =  ^A  for  every  ^cR  then  A/^A

a/^8  is  an  injection  for  every  ^eR  as  if  i' (a  +  }A)   =  0

in  8/^8  then  a  €   ^8  hence  a  e   ^A  so  a  +  ^A  =  0   in  A/^A  and

Ker  i'   =  0.     So  i'   injective.     Now  since  A/^A  =  R^R©A

and  a/^8  =  R/^R © 8,  R/^R © A  lei  R^R© a  is  an  injection

for  each  ^eR.
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`    2')   +   2):      Suppo.se   Horn   (R/R^,   8)   +   Horn   (R/R^,   C)    is

an  epimorphism  for  every  ^eR.     Now  since  if   f  e  Horn   (R/R^,   8)

then  f  is  define.d  by  what  it  does  to   (1  +  R^) .     That  is

if  reR  f (R  +  R^)   =  rf (1  +  R})   =  rb  where  b  =  f (i  +  r}) .

But   0   =   f (A   +  R   )   =   ^f (1..+   R})   =   ^8   so   if   f   e   Horn   (R/R^,   a)
'\

then  f  is  ident.ified  with  some  beB  such  that  ^b  =  0  and  we

have  Horn   (R/R^,   8)   =   {beB|^b  =   0}   and  similarly  for

Horn   (R/R^,   C).      So  we  get   for   ^ek.{beB|^b  =   0}   ;   .{c€C|,^c   =   0}

is  a  surjection,  that  i.s,  for  each  cec  such  that  ^c  =  0  there

exists  beB  such  that  ^b  =  0  and  8' (b)   =  c  where  8'   =  a  re-

stricted  to  {bcB|^b  =  0}.

2)   +  2') :     Suppose  if  }C  =  0  c€C  then  there  exists  beB

such  that  a(b)   =  a  and  }b  =  0,   then  {beB|^b  =  0}     9.

{c£C|^c  =  0}  where  8'   is  a  restricted  to'. {beB|^b  =  0}   is  a

surjection  for  each  ^eR.     But  since  {beB|^b  =  0}   =

Horn   (R/F^,   8)   and.{cec.|^C  =   0}   *   Horn   (R/R^,   C)    then   for

each  ^€R  Horn   (R/R^,   a)   +  Horn   (ri/R^,   C)   is  a   surjection.      .'

osition  3.3:

1)       C  is  torsion-free  if  and  only  if  every  extension

(*)  with  C  as  the  factor  module  is  pure.

2)       A  is  divisible  if  and  only  if  every  extension   (*)

with  A  as  the  Kernel  is  pure.

Proof  I) :     For  any  extension   (*)   0  +  A  +  8  +  C  +  0

exact  gives  Tor](R/^R,   A)   +  Tor[(R/^R,   8)   +  TorL(R/^R,   C)   +

R/^R  ®A  +  R/^R  ©8  +  R/^R ©C  +  0  exact.     If  C  torsion-

free  then  Tor[(R/^R,  C)   =  0  for  all  ^eR  so  we  have

0  +  R/^R ©A  +  R/^R ©8  for  all   ^eR  and   (*)   is  pure  by  1' .



If   (*)   is  pure  for  ev.ery  extension   (*)   then  we  have

Tor]   (R/}R,   a)   +  TorL   (R/^R,   C)   +  R/  R©A  +  R/^R©B

but  since   (*)   is'  pure  we  have  TorL   (R/^R,   8)   +

Tor]   (R/^R,   C)   +  0  and  if  we  take  8  projective  as  is
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permitted  by  reference  I   (pg.   7)   we  have  Tor]   (R/}R,   8)   =  0

so  we  gat  Tor[   (R/^R,   C)   =  0  and  by  Proposition  3.i  C

is  torsion-free.

1
Proof  2) :     If  A  is  divisible  then  Ext     (R/R^,  A)   =  0

for  all  ^€R  so  for  any  `extension   (*)   0  +  A  +  8  +  C  +  0

exact  gives   0   +  Horn  R/R^,   A)   +  Horn   (R/R^,   8)   +  Horn   (r/R   ,   C)+

ExtL   (R/R},   A)   exact.     But  since  A  divisible  ExtL   (R/R^,   A)   =   0

so  we  have  Horn   (R/R^,   8)   +  Horn   (R/R^,   C)   +   0   for  all   ^eR

and  by  2'    (*)   is  pure.     If  for  any  extension   (*)   0  +  A  +  a  +

C  +   0   exact   (*)   is  pure   then  Horn   (R/R^,   8)   +  Horn   (R/R^,   C)   +   0

is   exact  and   0   +  Horn   (R/R^,   A)   +  Horn   (R/R^,   8)   +  Horn   (R/R^,   C)   +

ExtL   (R/R^,   A)   +  ExtL   (R/R^,   a)   +   .   .   .   is  exact.     But

these  two  gives  us   0  +  ExtL   (R/R^,   A)   +  ExtL   (R/R^,   a)         '

and  taking  8  to  be  injective   (i,  pg.   9)   we  have
I

ExtL   (R/R^,   a)   =  0   so  Ext     (R/R},   A)        0  and  A  is  divisible

by  Proposition  3.1' .

As  a  corollary  we  have  the  equivalence  of  the  following

three  statements :

a)     Every  extension   (*)   is  pure.

b)     Every  module  is  torsion-free.

c)     Every  module  is  divisible.
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Now`we  will  look  at  submodules,   factor  modules,   etc.   of

torsion-free  or  divisible  modules.

osition  3.5:

1)     An  estension  of  .a  torsion-free  module  by  a  torsion-

free  mod.ule. yields  always  a  torsion-free  module.

2)     Also  an  extension  of  a  divisible  module  by  a

divisible  module  yields  a  divisible  module.

Proof  I) :     Suppose  we  have  0  +  A  +  8  +  C  +  0  exact  with

A  and  a  torsion-free.     then  we  get  +  Tor]   (R/^R,  A)   +

TorL   (R/^R,   a)   +  Tor]   (R/^R,   C)   +  R/^R©A  +  R/  R® a  +

R/^R ©C  +  0  exact  for  all  ^eR  but  since  A  and  C  torsion-

free  TorL   (R/^R,   A)   =  Tor]   (R/^R,   C)   =   0   for   every  ^eR.

This  gives  TorL   (R/^R,  8)   =  0  for  :11  ^eR  so  a  is  torsion-

free ,
Proof  2) :     Suppose  we  have  0  +  A  +  8  +  C  +  0  exact  with

A  and  C  divisible.     Then  we  have  0  +  Horn   (R/R^,   A)   +

Horn   (R/R^,   8)   +  Horn   (R/R^,   C)   +  ExtL   (R/R^,   A)   +  ExtL    (R/R^,   a)+

ExtL   (R/R},   C)   +   .    .    .   exact.     But  ExtL   (R/R^,   A)   =
1

Ext     (R/R^,   C)   =  0  for  all  ^eR  as  A  and  C  divisible  so  we

have  ExtL   (R/R^,   8)   =  0  for  every  ^€R  and  a  is  therefore

divisible .
I

1£  C  is  a .factor  module  of  8,  we  have  an  exact  sequence

of  the  type   (*)   with  oi  the  connonical  injection  8  the

connonical  surjection  and  A  the  kernel  of  8.

0.     Such  a  sequence  will  be  called."associated"  with  8  +  C.

Similarly,   if  A  is  a  submodule  of  8,  we  have  an  exact  sequence
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of  the  type   (*)   with  or  the  connonical  injection,       the

connonical  surjection  and  C  the  cokernel  of  a.

0  +  A  +  a  9  C  +  0.     Such  a  sequence  will  be  called
01

"associated"  with  A  +  8.

osition  3.6:

1)     A  f actor  module  C  of  a  torsion-free  module  8  is

torsion-free  if  and  only  if  the  associated  exact  sequence

(*)   is  pure.

2)     Similarly,   a  sLbmodule  A  of  a  divisible  module  a

is  divisible  if  and  only  if  the  associated  sequence   (*)   is

Pure .
Proof  I) : .   If  C  torsion-free  the  associated  sequence  is

pure  by  Proposition  3.3.     If  the  associated  sequence
0  +  A  +  a  +  C  +  0  is  pure  then  we  have  for  every  ^eR

Tor]    (R/^R,   A)   +  TorL    (R/^R,   8)   +  TorL    (R/^Rt   C)   +

R/^R  ©A  +  R/^R  ©8  +  R/^R  ©C  +   0  exact.     Now  Tor]   (R/^R,   8)   =   0

for  every  }eR  as  a  torsion-free  and  using  1'   in  the  defini-

tion  of  pure  we  get  TorL   (R/^R,   C)   =  0  for  every  ^€R  and

hence  C  is  torsion-free.

Proof  2):     If  A  is  divisible  then  by  Proposition  3.3  the

associated  sequence  is  pure.     If  the  associate.d  sequenc'e  is

pure  and  a  is  divisible  then  we  get  for  each  ^eR
0   +  Horn   (R/R^,   A)   +  Horn   (R/R^,   a)   +  Horn  R/R^,   C)    +  Ext]    (R/R^,   A)+

I
Ext      (R/R^,   a)   +  ExtL   (R/R   ,   C)   +   .    .    .   exact.     But

ExtL   (R/R^,   8)   =  0  for  every  ^eR  as  a  divisible  and  using  2'

in  the  definition  of  pure  we  get  Ekt]   (R/R^,  A)   =  0  for  every

^eR  hence  A  is  divisible.
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.  We  shall  call  a  ling  R  a  left  PP   [respectively  PF]

ring  if  every  principal  left  ideal  of  R  is  projective

[respectively  flat].    A  right  PP   [respectively  PF]   ring

is  defined  similarly.

Lerma   3.7: A  PP  ring  is  a  PF  ring.

Proof :     Let  R  be  a  left  PP  ring.     Then  every  principal

left  ideal  of  R  is  projective.    I,et  M  be  a  principal  left
ideal  of  R  and  0  +  A  +  8  +  B/A       0  exact  for  modules  A 'and

a.      Then  We  get  +  TorL   .(A,   M)   +  TorL    (a,   M)   +  Tor]    (B/A,   M)+

A ©M  +  a  ®M  exact.     But  Tor]   (B/A,   M)   =  0  as  M  projective

by  comment  in  proof  Proposition  3.2,   so  we  get

0  +  A © M  +  8  G M  exact  and  M  is   flat.

I,emma   3 . 7 I : ExtL   (p,  A)   =  0  for  all  A  iff  P  is  pro-

jective.     If  P  projective  Ext[   (P,  A)   =  0.     Now  if

Ext]   (P,   A)   =  0  for  every  A,   look  at  0  +  F  +  G  +  H  +  0  exact.

Then   get   0   +   Horn   (P,   F)    +   Horn   (P,   G)    +   Horn   (P,   H)    +

ExtL   (p,   F)   =  0.     So  a  a  surjection,   so  P  projective.

I.emma   3.8:      Tor (}R,   C)   =  0  for  all  C  if  and  only  if

^R  is  flat.

Proof :     If  ^R  is  flat  and  given  C,  then  C  can  be  put

into  the  exact  sequence  0  +  K  +  P  +  C  +  0  with  P  projective

and  We  have  TorL   (^R,   P)   +  Tor]   (^R,   C)   +  ^R ©K  i   ^R©P.

But  Tor[   (^R,   P)   =   0  as  P  projective.     Kernel   a  =  0  as   ^R

flat.     So  we  have   0  +  TorL   (^R,   C)   +  0,   that  is  Tor[   (^R,   C)   =   0.



Now` suppose  Tor]

0  +   8  +  C  +  C/B  +

}R ©  a  +   }R  ®  C..

so  }R  is  flat.
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(^R,.  C)   =  0  for  all  C  and  let

0  be  exact.     Then  we  have  TorL   (^R,   C/B)   +

But  by  hypothesis  TorL   (^R,   C/B)   =  0.

osition  3.7:     I) In  order  that  any  submodule  of  a

torsion-free  left  module  be  again  torsion-free,  it  is
necessary  and  sufficient  that  R  be  a  right  PF  ring.

2)     In  order  that  any  factor  module  of  a  divisible  left

module  be  again  divisible.,  it  is  necessary  and  guff icient

that  R  be  a  left  PP  ring.

Proof  1) :     Let  8  be  torsion-free,  and  let  A  be  a  sub-

module  of  8  and  suppose  that  R  is  a  right  PF  ring.     Then

every  principal  right  ideal  of  R  is  flat.    Looking  at  the
associated   sequence   0  +  A  +  a  +  C  +   0  We  get  +  Tor2   (R/}R,   C)+

Tor[   (R/^R,  A)   +  Tor[   (R/^R,   a)   +   ;   but  since  a  torsion-

free,   TorL   (R/^R,   8)   =   0.     Also  we  have   0  +  ^R  +  R/^R  +  0

So  We   get   Tor2    (R,   C)    +   Tor2    (R/^R,   C)    +  TorL    (^R,   C)    +     .I

T6r]    (R,   C)   +  exact.      Now  Tor2    (R,   C)   =  TorL    (R,   C)   =   0

as  R  projective  and   Fo  we  have  0  +  Tor2   (R/  R,   C)   +

Torl    (^R,   C)   +   0.

^R  is  a  principal  right  ideal  and  hence  by  hypothesis

is  flat  and  so  by  the  preceeding  lemma  TorL   (^R,   C)   =  0  and

hence  Tor2   (R/^R,   C)   +  Tor]   (^R,   C)   =   0.     Now  this  gives

0  +  Tor]   (R/^R,   A)   +  0  hence  Tor]   (R/^R,   A)   =   0  and   since

R  is  flat  for  each  ^cR,   Tor[   (R/}R,  A)   =  0  for  each  ^eR,

hence  A  is  torsion-free.



Now  suppose  any  submodule  of  a  torsion-free  module

is  torsion-free  and  let  ^R  be  a  principal  right  ideal  of  R.

Also  let  C  be  any  module.     By  the  lemma  we  want

TorL   (^R,   C)   =  0.     Now  given  C  we  can  imbed  C   in  an  exact

sequence  0  +  A  +  P  +  C  +  0,  with  P  projective.     P  is  there-

fore  torsion-fr.ee   (Tor]   (R/^R,  P)   =  0  for  all  ^eR)   hence

by  hypothesis  A  is  torsion-free  and  we  get  the  exact  sequence

Tor2    (R/^Rt   P)   +   Tor2    (R/^R,   C)   +  Tor]   (R/^R,   A)   +  TorL   (R/^R,   P)  .

But  both  ends  are  0  as  a  projective  so  Tor2   (R/^R,  C)   a

Tor[   (R/^R,  A)   =  0  as  A  torsion-free.     Also  we  have

0  +  }R  +  R  +  R/  R  +  0  exact  so  we  have  Tor2   (R/^R,   C)   +

TorL   (^R,   C)   +  TorL   (R,   C)   =   0  as  R  projective   so  Tor]   (^R,   C)   =   0

Since  C  was  arbitrary  }R  is  f lat  and  since  i  was  arbitrary

any  principal  right  ideal  of  R  is  flat  and  hence  R  is  a  PF

ring .
Proof  2) :     I.et  C  be  a  factor  module  of  a  divisible

module  8  and  suppose  R  is  a  left  PP  ring.     Then  every  prip-

cipal  left  ideal  is  projective.    Iiooking  at  the  associated
I

exact  sequence  0  -+  A  +  8  +  C  +  0,   we  get  Ext     (R/R^,   8)   +

ExtL   (R/R^,   c)   +  Ext2   (R/R„   A),   but  ExtL   (R/R^,   8)   =  0  as

8  divisible.     Also  considering  0  +  R  +  ^R  +  R/R^  +  0  we  get.

ExtL    (R,   A)   +  ExtL    (R^,   A)   +   Ext2    (R/R^,   A)   +  Ext2    (R,   A)

exact.     But  both  ends  are  0  as  R  projective  so  we  get
1

0  =  Ext     (R^,   A)   =  Ext2   (R/R^,   A)   as  R^   is  a  principal  left

ideal  and  therefore  projective.     Now  we  get  0  +  Ext]   (R/R^,   C)+

0.     So  Ext]   (R/R^,   C)   =  0   so  C  is  divisible.
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`   Now  suppose  every  f actor  module  of  a  divisible  lef t

module  is  divisible.     Iiet.R^  be  a  principal  left  ideal  and

let  A  be  any  lef.t  R-module.     By  Iiemma  3.7'   we  want

ExtL   (R^,   A)   =   0.     Now  A  can  be  imbedded  in  a   sequence

0  +  A  +  8  +  C  +  0  with  a  injective,   so  8  is  divisible

(Propositi®.n  3..2,   2)   and  by  hypothesis  so  is  C.     Now  we

have  the  exact  sequence  ExtL   (R,   A)   +  ExtL   (R   ,   A)   +

Ext2   (R/R^,   A)   +  Ext2   (R,  A)   with  both  ends  0  as  R  projective

so  ExtL   (R^,   A)   a   Ext2  .(R/R^,   A)   =   0  as  we  have  the  exact

sequence   0  =  ExtL   (R/R^,   C)   +  Ext2   (R/R^,   A)   +  Ext2   (R/R^,   8)

0.    The  left  side  is  0  as  C  divisible  and  the  right  side  is

0  as  8  injective   (4,  pg.   50) .     Now  since  A  arbitrary

Ext[   (R^,   A)   =. 0  for  every  A  hence  R    is  projective  and

since  ^  arbitrary,  each  principal  left  ideal  is  projective
hence  R  is  a  left  PP  ring.                 I

osition  3.8:     I)   A  direct  sum  of  torsion-free

modules  is  torsion-free.

2)     In  order  that  a  direct  product  of  torsion-free
modules  be  always  torsion-free,   it  is  necessary  and

sufficient  that  for  every  ^E:R,  the  right  annihilator  r(i)

be  finitely  generated.

Proof  I) :     Let  {Ay}y€r  be  a  collection  of  torsion-

free  modules.     Let  A  =  ZAy.
yer

TorL    (R/^R,   A)   =     TorL    (R/^Ri   A   )

ZO  =   0   as   (I  pg.107,   Prop.1.2a)   Tor  commutes  with  direct
yer

sums  and  from  the  property  of  torsion-free  modules

TorL   (R/^R,  A)   =  0  for  each  ^eR  if  A  is  torsion-free.
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`   Proof  2) :     Iiet  {AT}yer  be  a  collection  of  torsion-

free  modules,   and  let  A  =  TBF.     Suppose  for  every  ^eRi

r(A)   is  finitely  generated  and  let  aeA  such  that    a  =  0.

This  implies  lay  =  0  for  every  yer,  that  is  a  =   (a¥treAi

ayeAy.     Now  by  hypothesis  r(^)   is  generated  by  a  finite

number  Of  elements,   say  uL,.„ur.     Now  since  A    torsion-

free  for  each  y  and  since  lay  =  0,   aT   e  r(A)A   ,   So  there

exists    air  ielt  aiTeAy  Such  that  aT  =  ±Z]¥iaiT.     Letting

::y::a:¥:rB:tAz::a:a:e`r:;;:i::::8:::)(:i:::::u::::ioi
free .

To  prove  the  converse  suppose  that  a  direct  product

of  torsion-free  modules  is  always  torsion-free.    Now  for

Qc rtNRa  °f  isomorphic
^eR  take  the  direct  product  A^  =  n

copies  Ra  of  R  over  the  index  set  r(A) .     Iiet  a^  be  the
"diagonal"  element  of  A^  having  ath  component  c»  for  every

oi  e  r(^) .     Then  ^a^  =  0,   so  since  A^  is  torsion-free,   that

is,  the  direct  product  of  torsion-free  modules  R&  =  R

which  by  hypothesis  is  always  torsion-free,  a^  e  r(^)A^,

that  is,  a^  =  Zuia±  for  some  finite  number  of  elements

u±  of   r(A),   and  a±  =   (a±G)   of  A^   (i  =   1...   r).     This   is

to  say,   for  each  a   e   r(^) ,   or  =  Zu±a±c,  Where  aia   is  the  Cith

component  for  each  i  =  1 ,...,   r  which  means  r(i)   is

finitely  generated.     (the  uL'S  do  it).

osition  3.8' : A  direct  product  as  well  as  a  direct

sum  of  divisible  modules  is  divisible.
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•   Proof:     LetfAT}ycr  be  a  collection  of  divisible  modules

and   let  A  =  ® Ay   and  A'   =   T[Ay.      Let  aeA,   a  =  +
aoL

such  that  A(A)   a.  =   0.      Then  A(A)   ay   =   0   for  each  y   so

ay   e   ^Ay  as  Ay   is  divisible  so  a   e ® ^Ay  =   A  +  AT  =   }A,

so  A  is  divisible.

Now  let  a€A'i   a  =   (ay)yer  such  that  4(i)a  =  0.     Then

J(i)ay  =  0  for  each  y  so  aT   e  ^Ay  as  Ay  divisible  for

each  y.      So  a  =   (^by)T€r   for   some  by   e  AT.      So

a  =  ^(bY)Ter   e   ^A'   S0  A.'   is  divisible.

osition  3.9: If  R  is  a  left  PP-ring,  then  every

right  R-module  possesses  the  "largest"  torsion-free  factor

module,  and  every  left  R-module  possesses  the  "largest"

divisible  submodule.

Proof :     Let  M  be  a  right  R-module.     Then  R^  is  a

principal  left  ideal  and  since  R  is  a  left  PP-ring,  R^  is

projective.    But  then  /(^)   is  finitely  generated  so  the
direct  product  of  right  torsion-free  modules  is  torsion-free.
Let  {M/Tc,}  be  the.  collection  of  all  torsion-free  factor

modules  of  M.     Then  Ilo  M/TCi  is  torsion-free.     But  considering

M/|Ta  We  See  that  f:     M/nTa  +  nor  M/T    defined  by  x  +nT     +
Ci

(X  +  Tc,)      is  an  injection  Since  if   (X  +  Ta)a  =   0  then

X   a  Ta  for  all  a   So  X   e   nTor   so  x  +   nTQ  =   0.      So  we  have

M/nTa  is  a  submodule  of  nM/TQ  and  by  the  mirror  statement  of

the  first  part  of  Proposition  3.7  and  the  fact  that  PP  +  I;F

we  have  M/nTa  is  torsion-free.     Now  we  claim  that  M/|Ta  is

the  largest  torsion-free  factor  module  of  M.     Since  if  M/T'

is   any   factor  module  of  M,   T'   e   {Ta}   so  n To,C=  T'   S0  M/T'
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`

is  ;maller  than  M/nTo,.     I.et  M  be  a  left  R-module  and  {Mo,}

be  the  collection  of  all  divisible  submodules  of  M.     Then

by  Proposition  3.8'   the  direct  sum,  ®MQ,  is  divisible

but  £M    is  a  factor  modu.Ie  of ®Ma  as  f : ®4a  +  ZMa  defineda
by   (XCi)a  e  a  +  Zxa  is  a  Surjection.     So  by  the  second  part

01€a
of  Proposition  3.7,   ZMCi  is  divisible.     Clearly  ZMo,  is  the

largest  divisible  submodule.

Definition:    A  left  module  A  will  be  called  torsion  if

Horn   (A,   C)   =  0  for  every  torsion-free  module  C.

osition  3.10:   I)     The  direct  sum,  ®   A,  is  a  torsion

module  if  and  only  if  every  summand  Aa  is  a  torsion  module

2)     If  A  is  a  torsion  module,   then  so  is  any  homomorphic

image  of  A.

3)     Any  extension  of  a  torsion  module  by  a  torsion

module  yields  again  a  torsion  module.

Proof  I) :     If ®Aa  is  a  torsion  module  then  Horn   (®o,t   C)   =  0

for  all  C  torsion-free.     nHom   (Aa,   C)   a  Horn   (®o,,   C)   =  0  for

each  a  and  all  C  torsion-free  so  for  each  a,  Ace  is  torsion.

Conversely  if  {Aa}  is  a  collection  of  torsion  modules

Horn   (AG,   C)   =  0  for  e;ch  a  and  all  C  torsion-free)   then

0  =  nHom   (AG,   C)   =  Horn   (©Aa,   C)   for  all  C  torsion  free.so
0'

ena is  torsion.
Proof  2)     Let  A'   be  a  homomorphic  image  of  A  by  f .

f
A  +  A'   and  look  at  Horn   (A' ,   C)   for  any  C  torsion-free.     Let

h  c   Horn   (A',   C)   and  xeA'.      Then  x  =  f(a)   for   some  aeA   so  h(x)   =

h(f (a))   =   (f   o   h)    (a)   =  0  as   f   o   h  is  a  homomorphism  from

A  +  C  and  A'   is  torsion.
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`   Proof   3) :     Suppose  we  have   0  +  A  +  8  +  C  +  0  with  A  and

C  torsion  and  suppose  D  is  any  torsion-free  module.     Then

from  the  properties  of  Horn  we  get  Horn   (C,   D)   +  Horn   (8,   D)   +

Horn   (A,   D)   exact.     But  both  ends  are  0  as  C  and  A  torsion

so  Horn  (8,   D)   =  0  and  sirice  D  arbitrary,   a  is  a  torsion

module .

Corollar 3 .10 :

submodule.

A  module  A. has  the  largest  torsion
\

Proof :     Let  {Aa}  be  the  collection  of  all  torsion  sub-

modules  of  A.     Then ®ACi  is  torsion  by  the  first  part  of

the  preceeding  proposition.     but  ZAa  is  the  homomorphic  image

of  ®Aq  as  in  the  second  part  of  Proposition  3.9  so  by

second  part  of  Proposition  3.10,   ZAc,  is  torsion.     Clearly

it  is  the  largest  torsion  submodule  of  A.

We  call  the  largest  torsion  submodule  of  A  the  torsion

submodule  of  A,   and  denote  it  by  T(A) .
`'

A  reduced  module  C  is  defined  by  the  property  that

Horn   (A,   C)   =  0  for  every  divisible  module  A.

osition  3.|0':     I) The  direct  product  IIC    is  aa
reduced  module  if  and  only  if  every  Ca  is  reduced.

2)     If  C  is  reduced,   then  so  is  any  submodule  of  C.

3)     Any  extension  of  a  reduced  module  by  a  reduced

module  yeilds  again  a  reduced  module.

Proof   I) :     If  Ca  is  reduced  then  Horn   (A,   nco,)   =   0   for

every  divisible  A.      But  Horn   (A,   nco,)   =  IIHom   (A,C   )   =   0   soa
Horn   (A,   Co,)   =  0   for  each  a  and  every  divisible  A.     So  Ca  is
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reduced  for  each  a.     If  for  each  oi,  C    is  reduced  then

Horn   (A,   Co)   =   0   for  each  divisible  A.      Then  Horn   (A,   ncCi)   =

r[Hom   (A,   Co,))   =  .0   for  each  divisible  A  so  IIca   is  reduced.

Proof   2):     Iiet  C'   be  a  submodule  of  C.     We  get

0  +  C'   +  C  +  C/C'   +  0  ex;ct.     Then  for  an  A  divisible  we

have   0   +   Horn   (A.,   C')   +  Horn   (A,   C)    exact.      But   Ham   (A,   C)   =   0

so  Horn   (A,   C')   =   0   so  C'   is  reduced.

Proof  3) :     Let  0  +  C  +  C'   +.C"   +  0  be  exact  with  C  and

C'   reduced.     Let  A  be  any  divisible  module.     Then  we  have

Horn   (A,   C)   +   Horn   (A,   C')   +   Horn   (A,   C")    exact.      Now  both  ends.

are  0  as  C  and  C"   are  reduced   so  Horn   (A,   C')   =   0   so  C'   is

reduced .

Corollar 3 .10 , : Among  submodules  8  of  A  with  reduced

factor  modules  there  exists  the  smallest  one,  which  we  denote

by   D(A)  .

Proof :     Let  {Ba}  be  a  collection  of  submodules  of  A  such

that  A/Bo,  is  reduced.     I.et    Ba  =  D.     Then  A/D  is  reduced  a`s

0   +  A/D  +  IIA/BCi   is   an   injection,   X   +  D   (X  +  Bo,)ov   SO

A/DC= nA/Bor  which  is  reduced.

osition  3.11:     If R  is  a  PF  ring,  A  is  a  torsion

module  if  and  only  if  it  has  only  the  tri,vial  torsion-free

factor  A/A.

Proof :     Let  R  be  a  PF  ring  and  suppose  A  is  a  torsion.

module;     Then  a  submodule  of  a  torsion-free  module  is  torsion

free  and  Horn   (A,   C)   =  0  for  every  torsion-free  module  C.
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.

Suppose  A  has  a  non-trivial  factor  module  A/B  torsion-free.

That  is  8  i  A.     Then  Horn   (A,  A/B)   ±  0  with  A/B  torsion-free

so  A  not  torsion. which  is  a  contradiction.     Iiet  R  be  a  PF

ring  and  suppose  A  is  a  module  with  only  torsion-free  factor

A/A.     Let  I  be  a  torsion-free  module  and  let  a   e  Horn   (A,   T) .

a(A)   =  A/Ke£  ¢  and  ¢(A)   is  torsion-f.ree  as  it  is  a  submodule

of  T.     But  this  implies  A/Ker  a  =  A/A  that  is  Her  ¢  =  A  which

means  a   =   0   so  Horn   (A,   T)   =   0   so.A  is  torsion.

osition  3.12: If  R  is  a  PP  ring,  C  is  reduced  if.

and  only  if  it  has  only  the  trivial  divisible  submodule  0.

Proof :     Let  R  be  a  PP  ring  and  let  C  be  reduced.     Suppose

C  has  a  non-trivial  divisible  submodule  8.     Then  Horn   (8,  C)   ±  0

as  the  inclusion  map  is  in  Horn  (8,  C).     But  this  contradicts

C  being  reduced,   that  is  8  =  0.     I.et  R  be  a  PP  ring  and  let  C

be  a  module  whose  only  divisible  submodule  is  0.     I,et  8  be  a

divisible  module  and  let  a   e  Horn   (8,  C).     Then  ¢(8)   is  a

submodule  of  C,   but   (8)   cS  B/Kei  ¢  a  factor  module  of  8  herice

divisible  so  a(8)   is  a  divisible  submodule  of  C,  hence  ¢(8)   =  0

so  a  =  0   so  Horn   (8,   C)   =  0.     Since  8  was  arbitrary,   C  is  reduced.

If  R  is  a  commutative  integral  domain,  our  definitions

of  torsion  modules  and  reduced  modules  coincide  with  the

usual  ones.

osition  3.13:
I
\

Let  R  be  a  commutative  integral  domain.

If  Horn   (A,   C)   =  0  for  every  torsion-free  module  C  then  for

€ach  aeA  there  exists  ^eR  such  that  ^a  =  0.
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`   Proof :     Suppose  there  exists  aeA  such  that  ^a  ±  0  for

any  ^eR,   A  ±     0.     Then  we  get  a  homomorphism  f :     Ra  +  A  and  f

injective.     Also.  we  have  a  map  Ra  +  R  +  I  where  I  is  the

f ield  of  fractions  of  R  so  we  have

0  + .Ra  £A  since  I  injective

So  we  have  a  map  ¢  such  that  ¢   a   f  =  i  ±  0  so  ¢  ±  0  and

Horn  (A,   I)   ±  0  since  I  torsion-free  A  is  not  torsion-free.

osition  3.14:     If  for  each  aeA  there  exists  ^eB,

A  i  0  such  that  ^a  =  0  then  Horn   (A,   C)   =  0  for  any  torsion

free  C,
1

Proof :     Let  C  be  torsion-free  and  let  f  e  Horn   (A,  C)

and  ail,  A  ±  0.     Then  there  exists  A  ±  0,   ^eR  such  that

^a  =  0.       f (a)   =  f (  a)   =  0  and  since  C  torsion-free

f (a)   =   0   implies   f (a)   =   0   so  f  =   0   so  Horn   (A,   C)   =   0.

Let  t(A)   denote  the  set  of  torsion   (Levy  Sense)    (5)

elements  of  A.

Lerma   3.15: If  R  has  the  left  quotient  ring  QL,   t(A)

is  a  submodule  of  A  and  coincides  with  the  kernel  of  the

natural  mapping  A   + QL © A.

Proof :     t(A)   is  a  submodule  of  A  by  Theorem  2.6.     If

i  ® a  =  0  then  da  =  0  for  some  d  regular  in  R  as  in  the

proof  of  Proposition  2.7.     If  a  is  Levy  Sense  torsion  then
da  =  0  for  some  d  regular  in  R  so  I © a  =  d-I ® da  =  d-I ® o  =  o

I

in  Ql ©A.

osition  3.16: For  a   (not  necessarily  commutative)
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integral  domain  R,  the  following  statements  are  equivalent.

i)     R  has  the  left  quotient  ring  QA

2)     For  any  left  module  A,   we  have  T(A)   =  t(A)

3)     For  any  A  i  0,   every  element  of  R/R}   is  a  torsion

element.

Pr.oof,:      1.+   2:     By  I,erma   3.15   t(A)   is  a   submodule  of

A  and  since  it  is  torsion  in  the  usual  sense,  hence  also

in  Hattori's  sense   (3)   and  since  T(A)   is  the  largest

Hattori  sense  torsion  Submodule  of  A,   t(A)  c=T(A).     On  the

other  hand,  A/t(A)   is  torsion-free  iri  the  usual  sense

hence  also  in  Hattori's  sense  since  R  has  no  zero  divisors.

So  by  definition  Horn  T(A) ,   a/t(A)   =  0,   that  is,   T(A)Ct(A)

so   T(A)   =   t(A).

2  +   3:     It  is  clear  that  Horn   (R/RA,   C)   =  0  for  ^eR*

where  R*  is  the  set  of  regular  elements  of  R  and  for  any

torsion-free  C,   (Hattori's  sense)   that  is,  R/R^  is  a  torsion

module  in  Hattori's   sense.     If  we  let  A  =  R/RA   then  T(A)   =
I

R/RA,   but  T(A)   =  t(A)   by  2   so  R/RA   =   t(R/RA),   so  each  element

of  R/RA   is  a  torsion  element  in  Levy  sense.

3    +i:     Let  ^cR*,   that  is,  }   ±  0,   and  let  ueR,   then

U  +  R    i   €R/RA   hence.torsion  by  3   so  there  exists  CieR*   such

that  Ciu  +  R^   =  0.     That  is    ueR^  which  means  there  exists

BeR,   such  that  Gu  =  8^.     So  for  each  ^eR*,   ueR  there  exists

oieR*,   BeR,   such  that  Ciu  =   8^   so  R  has  a  left  quotient  ring

by  Theorem  2.2.

If  A  is   torsion-free  then  T(A)   =   0  as  Horn   (T(A),   A)   =   0

implies  T(A)   =  0  since  the  identity  map  is  a  homomorphism

from  T(A)   into  A  and  the  only  way  for  the  identity  map  to  be
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0  is  for  I(A)   to  be  0.

If  T(A)   =  0  A  is  not  necessarily  torsion-free  as  the

following  counter  example  shows.

I.et  R  =   Z/4Z  and   I.:t  A  =   2Z/4Z.     Then  T(A)   =   0  but

A  is  not  t.orsi.on  free  as  Z¢R,  i.i =  0  but  Zer(Z)  A  as

r(Z)A  =   (5.).
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