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ABSTRACT

This paper is a study of torsion theories and related
topics such as pure and divisible for both integral domains
and non-integral domains. Motivating the study was a
super goal of investigating the existence and uniqueness
of torsion-free covering modules over not necessarily
integral domains. These are shown to exist and unicuely
in the first section of the paper for the integral domain
case. Two torsion theories for not necessarily integral
domains are studied in the second and third sections. 1In
the second section Lawrence Levy's theory is studied and
it is proved that the set of torsion elements of a module
forms a submodule, if and only if the ring has a right guo-
tient ring. In the third section Akira Hattori's theory
is studied and it is shown that the two theories agree
where both are defined and that in the case of integral
domains they both agree with the usual torsion theory. 1In
the third section homology is used considerably in both

definitions and proofs.
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Torsion theory as well as the related properties of
pure and divisible are studied in three settings. 1In the
first siﬁuation; commutative integral domains, Enoch's

paper (2), Torsion-Free Covering Modules, is studied. 1In

this the usual definitions of torsion and divisible are
used, and "torsion-free -covering modules" are shown to exist
and uniquely. Here, the property of torsion was not so
much studied as was an interesting result of the property
in the integral domain situation.

In the secbnd situation, rings in general, the usual
definitions as in the integral domain case yield each
module of a fing torsion unless the ring has no zero divisors.
This leads to a reformulation of definit@ons and to a study

of Levy's paper (5), Torsion-Free and Divisible Modules Over

Non-Integral Domains. Taking Levy's definitions of torsion

and divisible, it is shown that the torsion elements of a
module form a submoduie if and only if the ring has a quotient
ring.

In the third situation, rings with unit, Hattori's paper

(3), A Foundation of Torsion Theory for Modules Over General

Rings is studied. 1In this paper still other definitions of
torsion and divisible are made and homology is used extensively

in developing some of the results of the torsion property.



" At the end of thé sections on Levy's paper and
Hattori's paper comparisons of the theories are made. This
is to say that Lévy's and Hattori's definitions are equiva-
lent under certain conditions and that both theories are
equivalent to ﬁhe usual £heory in the integral domain case.

Fof needed definitions and results in homology, Cartan

and Eilenberg's (1), Homological Algebra and Jans' (4)

Rings and Homology were used as references. For properties

concerning injectives and divisible Cartan and Eilenberg (1)

was used.



Section 1.

Through out this section, unless otherwise stated, A
will be considered to be a commutative integral domain with
identity and K its field of fractions.

Definition: An A—@odule E is said to be torsion-free
if ox = 0 for aeA, xeE implies o = 0 or x = 0.

Definition: A submodule E, of an A-module E is pure in

E if @E; = oE N E; for all aeA.

Proposition l.1: If E is torsion-free, a submodule El
of E is pure in E iff E/El is torsion-free.

Proof: - Suppose E; is pure in E, Then 0E; = aE N E, for

1
all aeA. Now if a(e + El) = 0, then ae + El = 0 so aeeEl.
Hence, since El pure in E and ae € oE El’ oe € aEl so |
ae = oe; for some e; ¢ El. Thus, a(e - e;) = 0. But ,
e - e ¢ E and since E torsion-free o = 0 or e - el =0,
that is o = 0 or e ='e, which implies a = 0 or'eeEl. Thus
o =0or e + El = 0. Now suppose if E/E1 is torsion-free,
then for each o € A, ecE, a(e + El) = 0 implies o = 0 of

eeEl. Clearly aEl

Now let e € aE N El’ then e = ae' for some e' € E and so

C oE f)El as El is an A submodule of.E._

ae' + El = 0 as ae' € El' This implies a(e' + El) is equal

to 0 and hence, oo = 0 or e' ¢ El'. If o = 0 ae' ¢ aEl as



ae' =0 € E;. If e'e El, ae' € aEl and so in either case
ae' € OE;, so ae' = e € aEl. Thus oE F\EIC:_aEl for each
o in A. So aEl = OE f\El and El is pure in E.

Proposition 1.2: The union of a chain of pure sub-

modules of an A-module E is a pure submodule of E.

IS

Proof: Let (EA) | be a family of pure submodules

Ael
which form a chain indexed by an appropriate set L. Then
the union of these submodules is again a submodule as they

are totally ordered by inclusion. Now if e € QE /WA%E E, i

then e ¢ EA for some X € L, so e € QE f\EA and since EA is
a pure submodule of E e € QGE,. But OE a UE so

o ' : A = AeL
e €a x%EEA so eE() JE, = ¢ U E, and so the union is pure

in E.

Proposition 1.3: If E2(: El are submodules of E such

that E, is pure in E and El/EZ is pure in E/E2 then El is

pure in E. )

Proof: If E, is pure in E then aE, = aE (1E, for all

2
o € A. And also if El/E2 is pure in E/E2 then aEl/E2 =

aE/Ez(W E,/E, for all o € A. Clearly aElcj;a E f)El so let

oe € El for some e € E and @ € A, Then Ce + E2 = ael + E2

for some el £ El, and so ae - ael € E2 which can be written

ole - el) € E2 but since E, pure in E, a(e - el) = ae,

for some e2 in E2. But then ae = a(el + ez) and since

e, + e, € El' a(el + ez) € aEl SO ae € aEl and we have

E E E.. So for all €e A, aE. = aE E., and E 1is
aE N ]_C:a 1 ) " ¥ N 1 "

pure in E.



Proposition 1.4: For any A-module E there exists a

torsion-free A-module El, and a surjection p: E =~ El' such
that if ¢ is any A-linear mapping from E into a torsion-
free module F then there is a unique linear mapping f:

El + F such that f o p = ¢. i.e., the diagram:

P
E — E
"
E‘ o6 + f
N

commutes.

Proof: Let El be E/E' where E' is the torsion sub-
module of E. (The set of all elements in E that are
annihilated by a non-zero element of A is a submodule of
E and E/E' is torsion free.) Let p be the connonical sur-

jection p: E =+ E/E'. Let be an A-linear mapping from
J p: g

E into a torsion-free module F. Then define f: E;> F by

f£(x) = ¢(x) if x, x' € x. There exists @ € A a # 0 such
that a(x - x') = 0. So ¢(a(x - x")) =0 = a(d(x - x")) =
&[¢(x) - ¢(x')] but since F torsion-free and o # 0 ¢(x) -
¢(x') = 0 and hence, ¢(x) = ¢(x') and the map is well de-

fined. Show f is homomorphism. £ is a homomorphism for

f(x) + £(y), also a # 0

f(x +y) = ¢(x +y) = ¢(x) + ¢(y)
of (X) = ad(x) = ¢(x) = £(ax) = £(@x). Clearly, £ o p = ¢.
Now if g is any map from El - F such that g o« p = ¢, then

g o p(x) = g(xX) = ¢(x) = £(X) and so g = £.

Now we will define torsion-free covering module and
proceed to develop it. Essentially, we wish to reverse the

diagram for the preceeding proposition and the positions of



of E and El'

Definition: Given a module E then a torsion-free
module T(E) and a map ¥Y: T(E) =+ E will be called respec-
tively a torsion-free covering module of E and a torsion-
free covering of E if they satisfy the following:
(1) KXer Y contains no non-trivial pure submodules of
E.

(2) if ¥: F » E is a linear map where F is torsion—
free then there exists a linear map f: F -+ T(E)
such that ¥ o £ = ¢. |

This is to say that the diagram
: 4
T (Ee\ -+ E
£ *e
\ F

The existence and uniqueness of both of these are proved

commutes.

shortly but first we need to make several definitions and

!

establish a few lemmas.

Definition: A linear map Y¥: E' » E will be said to
have the torsion-free factor property abbreviated (TFF),
if for any linear mapping ¢: F - E, where F is torsion-
free, there exists a linear map f: F - E' such that ¥ o £ = ¢.

i.e., the diagram:

b4
E' > E
?R\\\\\\ 8
B )
T F
commutes.
Lemma 1.5: If : E' > E has the torsion-free factor

property and E. is a submodule of E then the linear mapping

1



- . 2 i : -l
£: . ¥ l(El) + E. which agrees with Y on ¥ (El) has the

1
torsion-free factor property.

Proof: Define f: W_l(El) - El by f(x) = ¥(x). Let
F be a torsion-free module and ¢ a linear mapping, ¢:
F » El. Now since Y had the torsion-free factor property
there exié%s a‘linear mapping g: F - E' such that ¥ o g = ¢.
Now g/g”1 (W-l(El)) is a linear map g: F =~ W'l(El) such
that £ o g/g_l (W'l(El)) = ¢ so f has the torsion-free

factor property.

Definition: An A-module M is said to be divisible if
for each m ¢ M, a € AN{0} there exists m' € M such that
m = am'.

Remark 1.6: For integral domains injective modules are

divisible modules.

Proof: Let M be an injective A-module where A is an

integral domain. i.e., given any module E and a submodule
E' and any homomorphism ¢: E' -+ M there exists a homo-
morphism f: E - M such that £ o i = ¢ where i is the connoni-
cal injection. i.e., the diagram:

0> E' +E

o v,/ ¢

M

commutes.

Lemma 1.6': In order that a module M be injective it

is necessary and sufficient that for each left ideal A of
A and each homomorphism £f: A + M there exists an element

g € M such that f£(A) = Ag for all A € A.



" Proof: Suppose M injective, then the homomorphism £
has an extension g: A »* M and fA = g = g(l1) for each
A € A, and the cénclusion is necessary. To prove sufficiency
consider a module E, a submodule E', and a homomorphism f:

E' > E. Consider the family F of all pairs (E fl) where

ll
o - 1

1°? El E 1s an

extension of f. We introduce a partial order in F by

E, is a submodule of E containing E' and £

letting (El, fl) < (E,, f2) if E) CTEy, and £, is an extension
of fl' The family F is obviously inductive and therefore by
Zorn's lemma there is an element (Eo' fo) of F which is :
maximal. Now Eo‘= E since, if not, suppose x € E and X £ Eo'
The set of all A € A such that Ax € E  forms a left ideal

A of A and the.map £,': A +» E defined by £, (A) = £q (Ax)

is a homomorphism.* There is therefore an element g € M

such that fo(lx) = Ag for all X € A, Setting £,' (e + Ax) =

fo e + A\g, e € Eg/ A € A, yields then a map fo'' of the sub-

module E0 + x, of E which is an extension of fo'. Thus

(Eo, fo) is not maximal.

Continuing with the proof of the remark. Let M be
an injective module and let m ¢ M, A € A, A # 0. Consider
the ideal A = AA. Since al =B\ implies a = B (integral
domain) the formula f (o)) = am defines a homomorphism f:
A ~ M. Since M is injective there exist by the preceeding

lemma a m' € M with £(A) = Am' for all A € A. Thus m =

*Show fo' is well-defined for if A =B then fo'(A) = £5(Ax)

and fo'(s) = fo(Bx) but fo(lx) = fo(Bx) = fo(Ax—Bx) = fo((A-B)x)

£o(0x) = £ (0) = 0 so £ '(}) = £5'(B).



f(A) =\m' so M is divisible.
Lemma 1.6: If E is injective then ¥: E' -+ E has

the torsion-free factor property if and only if for every

linear map ¢: F » E, where F is torsion-free and injective

there is a linear mapping f: F + E' such that Yo £ = ¢.

Proof: By definition if ¥: E' » E has the torsion-
tree factor property (TFF) then for every linear map ¢:
F - E where F is torsion-free there exists a linear mapping
f: F » E' such that Yo f = ¢. If F is torsion-free and in-
jective it is still torsion-free and the existence is still
guaranteed if ¥ has TFF. Now if ¢: F_. =+ E is any linear

1
mapping where Fl is torsion-free, then since F, is a sub-

1
module of a torsion-free injective (hence divisible) module
£ (Fléa K), and since E is injective, there exists a linear
mapping ¢: F = E such that ¢/Fl = ¢1. Then by hypothesis
there exists £f: F =+ E such that ¥ o £ =¢ and ¥ o (f/El) =

¢l'

Lemma 1.7': (Theorem 3.3 pg. 9) Each module E is a

submodule of an injective module.

Proof: For each module E we shall define a module
D(E) containing E with the following property: (%) If A
is a left ideal of A and £f: A =+ E, then there is an ele-
ment g € D(E) such that £(A) = Ag for all A € A. Let ¢ be
the set of all pairs (A, f) formed by a left ideal A of A
and a homomorphism f: A + E. Let F be the free module

generated by the elements of ¢. Let D(E) be the quotient



Qf the direct sum E +'F¢’by éﬁe submodule generated by the
elements
(E(A), - x(A, £)) (A, £) € &, X € A

The mapping e + (e, o) yields a homomorphism ¢: E - D(E).
If ¢(e) = 0 then ¢(e) = (e, 0) = Zui(fi(ki), -li(Ai, fi)) =
Z(fi(ui/ Ai), -‘uiAi(Ai fi)). Therefore, Zuili(Ai, fi) =0
in f¢, which implies e = 0. Thus ¢ is a monomorphism and, by
identifying e and ¢(e) we may regard E as a submodule of
D(E) .

We now prove that D(E) has the property (x). Let
f: A > E where N is a left ideal in A. Then (A, f) € @,
Let g be the image in D(E) of the element (0, (A, f)) of
E + F,. Then for each X € A, £(X) = (£()), 0) = (0, A(X, £))
Ag as required.

Now let {! be the least infinite ordinal number whose
cardinal is larger than that of the ring A. We define
Qa(E) for o < @ by transfinite induction as follows:
Ql(E) = D(E); if o = B + 1 then Qa(E) = D(QB(E)); if a is
a limiting ordinal then Q4(E) is the union of QB with B < o,
We now prove that QQ(E) is injective. Let f: A -~ QQ(E)
where A is a left ideal of A. Then because of the choice of
 we have £ (M) C Qa(E) for some a < Q. Then by (*) there

is an element g € D(Q4(E)) (E) < Qq(E) with £(X) = Ag

B Qot+1

for all A € A, Thus by lemma 1.6' Qg(E) is injective.
Lemma 1.7: For every module E there exists a torsion-

free module E' and a linear mapping ¥: E' - E having TFF.

Proof: Using Lemma 1.5 and the preceeding lemma it

suffices to assume that E is injective since if it were



not.-we simply find an injective module that E is imbedd;d
in, get the map with TFF, and then restrict the map to E.
Then using Lemma 1.6 we see that in order to prove that a
linear mapping ¥: E' - E has TFF, it suffices to show
that if ¢: F > E, wheré'F is torsion free and injective,
then there is a linear mapping £f: F =+ E' such that

Y o £ =¢.

Now every torsion-free injective A-module is a K
module by the map defined by: if A € A, aA = aix for all
a e F, F a torsion-free, injective A-module and if X =
Al/Az where 12 #0 aAl/)\2 = b)A, where b is such that

1

a = bkz. b is uniquely determined as F torsion-free and

injective. Also every K-module is the direct sum of a
family of submodules isomorphic to K, since, if M is a
K-module, then M is a K vector space and hence isomorphic

to C) KAwhere L is the dimension of M. From what we
AeLl
have said, it suffices to show that there exists E' and W;

E' - E, ¥ A-linear, and for each A-linear map ¢': M - E
there exists an A-linear map f': M =+ E' such that ¥ o, f' =

¢'. But since M = K and since for each map ¢: + E

K
AEL AeL A

T ¢A(KA) it suffices to show that for each ¢:
Ael

K 7 E there exists an A-linear map f': K > E' such that

¢(KA)AEL =
¥ o, £' = ¢ i.é., F = K in *, =@K¢ in *x, ¢ € Hom (K, E).

Now let E' =@K¢ and ¢ € Hom (K, E) define Y: @K¢ > E,

$ € Hoﬁ (K, E) by ¥(k¢) ¢ € Hom (X, E) = 2 ¢(K¢), ¢ € Hom (K, E).
Then for each A-linear map ¢': K * E there exists an A-

linear map f': K * E'. Namely define‘f' (k) = (k¢)

$ € Hom (K, E) where ky = 0, ¢ # ¢' and k¢ = k. Clearly
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¥ o . f' = ¢' and the proof is completed.

Lemma 1.8: If y: E' - E has TFF and N is a submodule of
E' contained in fhe Kernel of V¥, then the induced mapping
¥', E'/N > E has TFF.
Clearly Y' exists and is homomorphism. Now let
¢: F =~ E be'any.A—linear mapping where F is torsion-free.
Then there exists an A-linear map £: F + E' such that ¥ o f = ¢,
Let £f': F - E'/N be the composition of f and the cononical
surjection. f' is a homomorphism. Now then V' o f' = ¢
since ¥' o £'(X)) = ¥Y'(£(x)+N) = ¥(f(x)). But since

Yo f=¢, Y(E(X)) = ¢(x).

Remark 1.9: If ¥: E' » E has TFF where E' is torsion
free and N is a maximal element among the pure submodules
of E' contained in the kernel of ¥, then the induced
mapping ¥' of E'/N is a torsion-free covering of E. 1i.e.

(1) Ker Y¥' contains no nontrivial, pure submodule

of E.

(2) 4if ¢: F =+ E is a linear mapping with F

torsion-free, there exists a linear map

f: F » E'/N such that ¥' o f' = ¢.

Proof: By Lemma 1.8 Y¥' has TFF. Ker ¥' contains no
nontrivial, pure submodule of E' since if El is a nontrivial
pure submodule of E contained in Ker ¥', then there exists

a submodule E" # N of E' such that . E"/N ~ E, and E"/N

1
is pure in E'. N pure in E' implies E" pure in E' with
P
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N < E" a contradiction to N being maximal among the pure

submodules of E' contained in the Ker V.

Theorem 1.10: Every module E has a torsion-free cover-

ing.

Proof: Every module E has a torsion-free module E'
and a linear mapping ¥: E' - E having TFF by Lemma 1l.7.
Let N be maximal among pure submodules of E' contained in
Ker Y. Then the induced mapping ¥': E'/N » E has TFF By
Lemma 1.8 and by Remark i.9 ¥' is a torsion-free covering
of E and E'/N is a torsion-free covering module of E.

Having established the existence we would want torsion

free coverings to be unique.

Theorem 1.11: If ¥': E' > E and Y": E" > E are two

torsion-free coverings of E and £: E' » E" is a linear map-
ping such that ¥" o £ = ¥', then f is an isomorphism.

Proof: Since ¥" is a torsion-free covering of E, thefe
exists a linear mapping f: E' » E" such that ¥" o £ = y'.
But then Ker f is a pure submodule of E' (since E" is
torsion-free) which is contained in ker ¥! But since Y' is
a torsion-free covering, ker f is 0. Thus f is a monomorphism
and so card (E') < card (E"). Similarly card (E") < card
(E') so card (E") = card (E'), that is, all torsion-free
covering modules of E have the same cardinality. Thus
let X be a set containing the elements of E' and E" and
such that card (X) > card (E'). Let F bg the set of pairs
(Eo' Wo), where EO is an A-module whose elements are

elements of X, and where Wo is a linear mapping E° + E,
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which is a torsion-freé cévering of E. Then (E', ¥') and
(E", ¥") belong to F.

Partially order F by setting (Eo' Wo) < (El, Wl), if
Eo is a submodule of El and ‘Pl/Eo = Wo. Then F has maximal
elements for if C is a chain of F let E* be the union of
the first cerdinates of the pairs inuC with the unique
structure of an A-module such that Eo is a submodule of E¥
for each (Eo, Wo) in C and let ¥*: E* > E be the unique
linear mapping such that_\l’*/Eo = Wo for each pair (Eo, ¥s)
in C.

Then Y* clearly has the torsion-free factor property.
If N is a pure submodule of E¥* contained in Kernel Y*
then N Eo is a pure submodule of E° contained in Kernel
Wo for each (Eo’ Wo) in C. Thus N Eo = 0 for each
(Eo, Wo) in C so N = 0. Thus, (E*, ¥Y*) belongs to F.
Clearly (E*, ¥*) is an upper bound of C.

Thus assume (E*, ¥Y*) is a maximal element of F. Now ,
let £, E* > E' be any linear mapping such that Y' o £, = ¥*.
By previous remarks we know f1 is a monomorphism. We would
like to show that it is also an epimorphism. LetY X be
such that card (¥Y) = card (E' - fl (E*)) and such that
E*N Y = ¢.

Such a Y is available since card (X) > card (E') =
card (E*). Let Ej = E* (J Y and let g be a bijection
Eo + E' such that g/E* - £

and g (Y) = E' - £ (E*).

1 1
Then Eo can be made uniquely into an A-module so that g

becomes an isomorphism. Letting E, denote this module we
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see ‘that E* is a submodule of Eo' that (Eo’ ¥' o g) is

an element of F and ¥Y' o g/E* = ¥' o fl = Y* so that

(E*, ¥*) < (Eo, ¥' o g). But (E*, ¥*) is a maximal element

of F, hence, = ¢, so E' - f1 (E*) = ¢ or £, is an epimor-

 §
phism. Similafly any linéar mapping f,: E* » E" such that
¥" o f2.‘= Y* is an epimorphism. But f o fl is such a mapping
since ¥" o f o fl =¥' o £ = ¥*, hence, £ o fl is an epi-
morphism but then f must be an epimorphism. But f is a

monomorphism, hence an isomorphism.

Theorem 1.12: If ¥Y: T(E) - E is a torsion-free

N
covering of E with Kernel G then the sequence 0 - ExtA

N

A (F, E) - 0 is exact if F is

(F, G) » Extg (r, T(E)) - Ext

torsion-free and if n > 1.

Proof: By definition of T(E), Hom (F, T(E)) - Hom (F, E) - O
is exact whenever F is torsion-free. Choose 0 - K-+ L - F »> 0

exact with L a free module. Then Ext® (K,__) =~ Extitl

(F,__) naturally. (Every free module is projective
(1, pg. 7), and if 0 > A » P » B » 0 is exact with P pro-
jective then Ext" (A; C) = Extn+l (B, C) for all C and all
n>1 (4 pg. 47).

By the exact sequence in the 1lst variable of Ext
Theorem (4, pg. 41) if 0 » A » B - D » 0 is exact, it iﬂ-
duces the exact sequence

-1 n n
Ext” © (a, c) » Ext (D, C) ~ Ext (B, C) -~ Ext" (A, C) ~

n+l
* Ext (D, C) . . .
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So we have 0 -~ Hom (F, G) -+ Hom (F, T(E)) g,

. o

Hom (F, E)—%° Ext! (F, 6) ~ Extl (F, T(E)) -
R S

Extt (F, E) > ... Ext?™1 (F, E) »~ Ext® (F, G) ~»

n n n+l
Ext (F, T(E)) - Ext (F, E) » Ext (F, G) - . . .
L

) ; £l
Im g = Ker £, but since Hom (E, T(E)) » Hom (F, E) > 0

is exact, Im g = Hom (F, E) so Ker £ = Hom (F, E) so Im

1
£ =0 so we get 0 - Ext (F, G) » Ext® (F, T(E)) - Extl (F, E) »

2
Ext (F, G) -+ . . . . But Ext2 (F, G) > Ext1 (K, G) so

1 1
we have 0 » Ext (F, G) -~ Extl (f, T(E)) -~ Ext (F, E) -
Extl (K, G) ~» Extl (K, T(E)) ~» Extl (K, E). But,
Hom (K, T(E)) - Hom (K, E) - 0 is exact as K torsion-free

1l .
so we get 0 - Ext (K, G) =~ Extl (K, T(E)) ~» Ext1 (F, E) » 0.
m
By induction if 0 - Ext (F, G) ~» Ext™ (F, T(E)) ~»

m , .
Ext (F, E) » 0 is exact for all F torsion-free, and

m
m<n -1, then 0 ~ Ext (K, G) ~» Extm (K, T(E)) -

Ext" (K, E) > 0 is exact for all m < n - 1 since K is
torsion-free. Now by isomorphism 0 - Ext" (F, G) ~»

n n
Ext (F, T(E)) » Ext (F, E) ~ 0 is exact and the theorem

is proved for all n > 1.

Lemma 1.13: If M and n are A-modules, MC N, i the

connonical injection and £ o i is an isomorphism where

i: M>Nf: N->M, then N ~ i(M) ® Ker f.

Proof: i(m) /() Ker £ = {0} since if x € i(A) (| Ker f
then f(i(x)) = 0 so x = 0 since an isomorphism is an in-

jection.
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Now N = i(M) @K'er f, s.il;me clearly {i(M) @Ker f} CN..
Now let x € N, then there exists y € M such that f(x) =y
and y is unique. Now £(i(y)) = £(y) =y, so £(x) - £(y) =0, -
and hence f(x-y) = 0 which implies that x-y € Ker f. This
means that there exists z € Ker f such that x - y = z.
But since x = y. + 2z and since y € i(M), x ¢ i(M) @ Rer f.
Since if also x = y + z' where z' ¢ Ker £, then y + z' -
(y + z) = 0. Soz' -2z=20, so z2' = z and x is uniquely

represented.

Theorem 1.14: If S is a simple A-module, L. C A is the

annihilation of S and ¥: T(S) - S is a torsion-free cover-
ing of S, then T(S) is a direct summand of any torsion-free

module F containing T(S) such that QT(S) =QF () T(S).

Proof: Let F be a torsion-free module containing
T(S) such that AT(S) = QF (1 T(S), T(S) —j; F, i connoni;:al
injection induces a map T(S) /AT(S) }* F/QF which is an in-
jection. i.e., j: T(S)/AQT(S) -+ F/AF where j(x + AT(S)) =
x + QF is a function. If x + QT(S) =y + AT(S) then
x -y eAQT(S) so x -y €QF so j(x-y + QT(S)) = 0 + QI =
j(x +QT(8)) - jly =QT(S)) so j(x +QAT(S)) = j(y +QT(S)) =
j(y + QT(S)). j is an injection, since suppose j(x +QT(S) =
0 + F, then i(x) +QF = 0 +(F so i(x) = x € QF, but '
x € T(S) so x € AT(S) so x + AT(S) = 0 + Or(S), so Ker j = 0.
Since S simple, any x € S, X # 0, generates S. Pick x # 0.
Define Tx: A »> S by Tx(a) = ax, this is a ﬁomomorphism.
Ker T .\ = {a & A}ax = 0} = annihilation of S =&, A/a - S,

so (L is maximal, so A/a is a field. F/QF is an A/a module
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with the obvious maps.and definition of addition so F/QF

is a vector space over A/a.

F/OF, then F/QF ~ &)
follows: let {zi}

vector space. Expand {j(zi)} i

AEL

iI

(A/a)k.

be a basis of T(S)/QT(S) as an A/a

Let {XA} A € L be a basis of

D

efine ¢: F/QF - S as

- 1ntov{xi} ber iU &

a basis of F/OF as an A/a vector space. I (1K = ¢.

xi = j(zi) i e I and ¢(xi)

0 if i € K where ¥ is the map

induced by Y and the connonical map p: T(S) » T(S)/AT(S),

i.e., ¥(x + QAT(S)) = ¥ (x):

Note if x QT(S), x = Zaiyi for

some {ai} € Oiyi} € T(S) so ¥(x + AT(S)) = ¥Y(x) = WZ(aiyi) =

ZW(aiyi) = Ia;

y (Yi) =

0 as a.

1

¢ Qfor each i. Thus

letting p and p' denote the connonical mapping from T (S)

into T(S)/QT(S) and from F into F/QF we get ¥ =V o p =

91 o P' o dias ¥ =¢; o0
j o p(x) = j(x +QT(S))

x + QF. So Vv

¢y ° p'
(S)

3

opas jop=p' oi, i. e.,

X +QF. p' o i(x) = p'(x) =

But since F is torsion-free there exists a linear mapping

f: F » T(S) such that ¥ o f = $1 o p' so ¥ o £ o i =

¢ o P' o i =¥, hence £ o i is an automorphism of T(S) by

Theorem 1.11 so that 1(T(S))

by Lemma 1.13.

T(S) is a direct summand of F
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This completes this section of the paper. So far
it has been proven that for A an integral domain and E
any A-module, there exists a torsion free covering module
of E and a torsion-free covering of E. We would like to
investigate thé existencé of similar objects for rings in
generalibut'this is beyond the scope of this paper.
However, in order to make such an investigation it would
first be necessary to define in a somewhat different light
the concepts of torsion-free, divisible, and pure and to
study these properties for rings in general. This is what

will be done to some extent in the next two sections.
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Section 2.

Using the definition of torsion-free modules as
given earlier verbatum, we find that the only rings with
torsion-free modules are integral domains. That is if
m € M a right module over a ring R with non-zero elements
X, y such that xy = 0, then mx = 0 or (mx)y = 0 so each
element of M is torsion for each right R-module M. There
does not exist a right torsion-free module over R. Alsb
if we assume that R is not commutative (even though it is
an integral domain) we do not know that the torsion
elements of M,_T(M), for M a right R-module form a sub-
module.

In this section we shall take the following as our
definition of torsion. An element m of a right R-module
M is a torsion element if Md = 0 for some regular element
(some non-zero divisor) d of R. Using this definition,
which is the same as the usual one in the case of integral
domains, every ring is a torsion-free module over itself.
Since if x € R and xd = 0 for some regular element d then
x = 0 (otherwise d not regular). So there are no non-zero
torsion elements. In a later theorem it will be shown
under what conditions torsion submodules exist. We shall
also define di&isible as follows: An R-module M is divisible
if Md = M for every regular element d of R. The condition
that d be regular is necessary since ofherwise the ring of

quotients would not be divisible.
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" Definition: Let R and S be rings satisfying the
following: (1) RC S, (2) every regular element of R
has a two-sided inverse in S (S has identity), (3) every
element has the form rd_1 for properly chosen r, d in R,
with d regular, then we shall call S a right quotient
ring ofnR. AIf 3 is replaced by d_l r then S is a left
guotient ring of R.
Definition: A ring R is said to have the common
multiple property (CM) if for every x, d in R with d

regular, there exists dl’ y in R with d, regular, such

3

that xdl dy.

Lemma 2.1: If R satisfies (CM) and dx = d1 where d

and dl are regular then x is regular.

Proof: Suppose y €¢ R, y # 0, xy = 0, then d(xy) = 0

so (dx) y = 0, so dl y = 0, so dl is not regular, a cén-

tradiction. Suppose y ¢ R, y # 0 and yx = 0, then apply

(CM) to d, d,, we obtain i, £, e regular such that de = d_f£,
: 1

1
then (dx) £ = de so xf = e. If yx =0, y(xf) = (yx) £ =ye =0,

and e is not a regular contradiction.

Corolla;yrz.l':. I£ dl and d2 are regular in R and R

has (CM) then there exists c c. in R such that dl c, =

1’ "2 i

d2 Cye-

Proof: cl is regular but 4d_, cl regular implies d, c

1
is regular so given d

1
regular and by lemma 2.1 c, 1’ %5

regular there exists Cyr €2 regular such that dl cl = d2 c2.
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Theorem 2.2: R has a right quotient ring iff R has

regular elements and satisfies (CM).

Proof: If R has a right quotient ring S then 1 € S

so 1 = rd for r, d in R, d regular. So R has regular

elements. Now let x, d é R with d regular, then 4 has a

two-sided inverse in S and x € S so d X € S so a

1

- )
dy dl dl so xdl = dy, so given x, d € R d, regular, there

exists dl, Yy € R dl regular such that xdl = dy; hence, R

has (CM). Now if R has regular elements and satisfies (CM),

-1 -1
x =yd , for some y, d. in R, dl regular. So dd X dl =

then R has a right ring of quotients for look at R x D.

D = regular elements of R and define an equivalence re-
lation (a, b) * (¢, d), if adl = cbl where dbl = bdl, b1
regular and hence, by lemma d; regular. Claim that this

is independent of the particular bl, dl which give the (CM)

of d and b. For if db2 = dbz, pick e, e2 regular so that b2

e2 = bl el then bd2 e2 = db2 e, = dbl e, = bdl el. Slncewb
is regular, we end up with d2 e, = dl el. From adl = cb1
we get ad2 e, = adl el = cbl el = cb2 e2 and the regularity
of e2 permits us to conclude that ad2 = cb2. We now see

that the relation is an equivalence relation.

reflexive (a, b) =~ (a, b) as ab = ab and bb = bb
symetric if (a, b) = (c, d) then adl = cbl where
db. = bd., then cb. = ad_ , where bd, = db

1 1 1 1 1 1
so (c, d) =~ (a, b). '
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transitive 1if (é, b) ~ (¢, d) and (c, 4d) =~ (e, £f)

~

then ad

3 = cbl where dbl = bdl and
'cfl = edl' where fdl' = dfl. Then by
letting fl' = d1 9, and bl' = dl' 9,
where gl, 92 such that b1 gl = fl g2 we
. - have afl' = ebl' where fbl' = bfl' since
afl' = ad1 gl = cbl 9, = cfl 9, = ed g, =
ebi and fbl' = fdl' g, = dfl g, = db, g, "
bdl gl'= bfl'.
We now introduce operations +, ., which render R x D

a ring. Define + by (a, b) ¥ (c, d) = (adl + cbl, dbl)

where dbl = bd, both b, , d; regular. Define - by (a, b)

h 8

(c, d) = (cal, bgl) where ag, = da1 gl regular. These

operations are well defined, closed, and associative (o, d)
is ¥ identity. ¥ commutes and . is distributive over + and
(d, d) is . identity. Now let d be regular in R then

regular in R. I = (d, d) for any

d = (ad_, dl) for any dl

¥

regular d in R but (dd dl) (dl, ddl) = (dl, dl) = 1 and

ll
(dl, ddl) . (ddl’ dl) = (ddl,
a; dl regular. So 4 has a two-sided inverse. Let x € S

ddl) =1 as ddl regular since

then x = (y, d) for some y € R, d regular in R. But (y, d) =

(v, d)Uddl, dl)(dl, ddl)) (y, 4) [(y, d) (da., dl)]

1

(dl, ddl) = ddlal' dgl where ygl = dia1 and 9, regular so

dg, regular but (ddj;a,, dg;) = (d;a;, 9,) = (99,, 9,) =y

ol - -]
but (d , dd ) = (dd;, d ) 1=231lso(y,d) =yd " yeR,

d € R, d regular and the properties of a right ring of
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quotients are satisfied by identifying x € R with (xd, d)

for any d regular in R. Clearly this identification is an

injective ring homomorphism.

Theorem 2.3: If R is a ring which has a right ring

of quotients S and a right ring of quotients S' then S
is isomorphic to S'.
Proof: Define f: S + S' by if x € §, x = rd for

some r, d € R, d regular, but since r, 4 € R, d regular,

= ~1 -
r, dand a1 ¢ 8" sorda™ € 8'. 8o let f(x) = £(rd” 1) =

rd-1 e S' x e S. f is a function since if x = X' then
(r, d) = (xr', d') so f(x) N f(x') by the nondependence of

the equivalence on the particular regular elements chosen

wd
to get the equivalence. If f(x) = 0, thenrd =0 so x = 0.

-1 _ =
£ is 1 . Clearly £ is onto £(x + g) = £(xd™! + sd_ L =

f(r, 4d) + (s, do)) = f(rdl + Sbl' do bl) where do 21 = ddl =
_1 _l o,
+ = + =
(rdl Sbl) (do bl) rdl(do bl) sbl(do bl)

1

1 = -1 ]
+ = + = + :
sbl(dO bl) rd sdo f (x) f (y)

rd, (dd,) '

Lemma 2.4: Let g be a right quotient ring of R. Then

1) For each right ideal J* of S, J* = (J*(] R)S

2) If J and K are right ideals of R whose sum is
direct, then (J + K)S = JS + KS.

Proof:

1) Suppose J* is a right ideal of S. Let x € J%,

=X

then x = rd for some r, 4 in R with d regular

as J*C S. xy € J*¥ for all y € S, d € S so

1

xd € J* sor e J* and r e Rsor € J*/)R, d - € S

so rd-1 (J*/)R) S so xe (J*/)R)S so J* (J* /) R)S.
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Now let X ¢ (J*/ﬁ R)S, then x € J*S and x € J*
as J* a right ideal of S, so (J* () R)S C J* so
J* = (J* () R)S.
2) Let J and K be right ideals of R shose sum is
direct. Clearlf; (F ®K) S =JS + KS. Claim
'JS + KS is direct. That is JS (1KS = 0. 1If

-1
x € JS (VKS then x =yzd ~, y € J, z, d € R,

-1
d regular. And x = yl, zl, dl ' Yq K, zl,
dl R, dl regular, yz = y2 for some y2 e J
-1
and z, = for some € K so d =
Yy 1 Y3 Y3 Y2
y3, dl'l. Now given d, dl' there exists regular
C, c1 € R such that dc = dl, c, so vy, d dc = Yy
dl_l, d)» g and y, c = Yoo B But y,c € J as
j a right ideal and ¢ € R and y3cl, K as K a
right ideal of R so yzc = Y36, = 0, but since

c, cl regular y2 0 and y3 = 0. Soy, z and

0.

Yyr 27 < 0, so x

Lemma 2.5: If R has a right quotient ring S, and if

s, =r,, d _l, es (

i i 1

then there exists elements xi, d € R, such that si = Xy d .

1= Lt ey (DN2 ri, di, eR, dl regular),

Proof: If n=1, s. = r,d. L and by S a right quotient

1 11
ring if n = 2, there exists c

-1
N

c, regular such ;hat dlcl =
r, ¢, (d2 c2) =

l'
o 2

dc,.and s =r cl(dl c

22 1 1 1

‘ -1 :
r,c, (dlcl) d = dlcl; xl = rlcl, X, = r,c,. Suppose for

K ' : -1 '
i = k there exists (xi) and d such that si = xid and let
i=1l
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s ¢S, that is, S = -1

X d , then there exists c,
K+1 K+1 K+1 K+l

c , regular in R such that dc = d c . Then
K+1 K+1 K+1

c and x.' = x.c i and r c
K+1 “K+1 i i i=1 K+1 K+1'

(d

d' = dc = d

-1
c ) =
K+1 K+1

. B
si(xic)(dc) i=l, ..., K, sK+l = rK+1 CK+l

-1 . : .
rK+l Cril (de) ~. And by induction the lemma is proved.

Theorem 2.6: The set of torsion elements of each

right R-module forms a submodule iff R has a right quotient

ring. |
Proof: Suppose R has a right quotient ring. Let M

be a right R-module and T the set of torsion elements of M.

O € T as R has 'a right quotient ring and therefore has

regular element d and od = 0 so 0 torsion. Now if tl, tzeT,

then tl dl = t2d2 = 0 for some dl, d2 eR both regular. By

Corollary 2.1' there exists cyr S, regular in R such that

dc =dc. Now (t, - t d. e = 0sot, - t_ €T soT
11 2 2 ( 1 2) ( 1 l) 1 2 4y

is a subgroup of M. We need only that txeT for each xeR

with teT. If xeR, teT, then td = 0 for some d regular in R.
But this implies by (CM) that there exists dl' y such that

xdl = dy and (tx)dl = (td)y = 0 so txeT and T is a subquule.
Now suppose the set of torsion elements of each right R-module
forms a submodule. Then since ¢ is not a submodule the set

of torsion elements of each right R-module is non-empty.

Since R is a right R-module the set of torsion elements of

R is non-empty and forms a submodule. So since 0 is an

element of each module, 0 is a torsion element, so there
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exists deR, d regular éuch tﬁat 0d = 0. So R has regular
elements. Let x, ¢ be in R with d regular. Now dR/dzR
is a right R-module. If dx + dzR € dR/dzR then d(-x) +
dzR is its inverse. dO0 + d2R is the identity. (dx + d2R)y =
dxy + d?R e dR/dzR as xyeR. Then the set of torsion ele-
ments ofidR/dzR-forms a submodule. Now d + d*p ig a

2
torsion element as (d + dzR)d2 = dd2 + d2R =d d4d + dzR =

0 + dzR as dza € dzR. Hence, for any‘xeR (a + dzR)x is.

also a torsion element by torsion elements being a submodule.
Hence, for some regular 4', (dx + dzR)d' = dxd' + d2R =0 +
dzR. That is dxd' € dzR; hence, dxd' = dzy for some yeR.

So given x, deR, d regular, there exists d', y such that

xd' = dy and we have the (CM). So R has regular elements
and satisfies (CM) so by Theorem 2.2 R has a right éuotient

ring.

Proposition 2.7: Let R have a right quotient ring S

and let M be a right R-module. Then M is an R-submodule

of. some S-module iff M is torsion-free. When the condition
-1

holds, every element of MS has the form md (meM, deR) and

MS ~ M & RS under the correspondence MS + M &) S.

Proof: Suppose M is torsion-free. Then the map
m->m® 1l is an R homomorphism from M - M@S as S is both
a right and left R-module so M@ S is a right R-module.
M&)S is a right S-module by the map (m@s)t = (m &) st)
steS. If we getm +1n<)]q 1-1 then M would be isomorphic

to a submodule of an S-module. Let F be the free abelian



26
group whose generators; are the ordered pairs (m, s) ¢ M x S,
and let f be the map of F onto M& S given by £ (I + (my,s;)) =

I+ mi® s;- Then Ker f is generated by elements of the

form (ml + m,, s) - (ml, ,‘.5) - (m2, s), (m, S, + sz) =
(m, sl) - (m, 52), and (mr, s) - (m, rs) (reR). If for some
-, g t
n, n®1 =20 then (n, 1) € Ker £ so (n, 1) = r + (mi, si),
i=1

where the terms on the right, when properly grouped are among
the generators of Ker f (or their negatives). Let d be a
common right denominator for the elements S; (Lemma 2.5),

= -1 t -1 .
(n, 1) = 3y + (m, x.d ), £(n, 1) = £( 3 + (m,, x,d )) =
i=1 1 1 {m] = i i

.

0 in M@Rd ”

n®1l = ;’ (mi®xid—l) e M®RA™L so n®)1

i=1

But M@Rd—l ~M&R ~ M (as additive groups) under the
correspondence m éc)rd"1 -> m@r - mr. Hence, 0 = n@l =
n@dd-l + nd. Since d is invertible in S, and hence
regular in R and n not torsion, nv = 0. Hence, M is con-
tained isomorphically in M &S with the imbedding m » m &) 1.
Now if M is contained in some S-module and md = 0 (meM, d !

.
regular in R) then 0 = mdd = m so m is torsion-free.

Every element of MS has the form mi S, - If we write
s; = r, d ' (Lemma 2.5) then Img s; = (my ri)d_:L which is
of the form md_l. Note that this does not imply that any
element can be written with the same d but that given an
element, such a d can be found for that element. Similarly,
every element of M&) S is of the form méz)rd_l = mr@dul =

-1
m' @d . Hence by the elementary properties of tensor
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products, the map m @s-—» ms of M® S onto MS is well

defined. It is 1-1 since m@d_l—, 0 = md-l implies m = 0

and hence m®d--l =.0.

Lemma 2.75: Any R linear map between S modules is

S-linear.
Proof: Let M and N be S-modules and let f be an

R-linear map from M to N. Then f(m:L + m2) = f(ml) + f(mz)

and if reR then f(rm) = rf(m). We only need to show tﬁat
if seS then f(sm) = sf(m). If seS then s = rd = for some d
regular in R so f(sm) = f(rd—lm) = rf (d—lm) as M is an

S-module so d_lmeM and £ is R-linear. Now f(d_lm) =
-1 -1 - = -1
d df(d m) =4 lf(dd lm) =d f(m) as deR and M is R-linear

so f(sm) = f(rd_lm) = rd-l(f(m)) so £ is S-linear.

Corollary 2.7': i.et R have a right quotient ring S,

let M and N be R-submodules of right S-modules, and let f

be an R-homomorphism of M into N. Then f*: MS + NS defined

L]

by £*(ms) = f£(m)s extends f to an S-homomorphism of MS into
NS. If f is one-to-one or onto, so is f¥*,
Proof: Since if M is a right R-module then M@ S is

a right S-module by the map M ® S x S + M® S defined by
1 -1
2

-1
where rod2 = dl r, and since if f is an R-linear map from

M » N where N is another right R-module then f@ lS is an

. -1 -1 o Tl -1
if m®zr d “eS then (m& r d Y(rdy ) = m@rlrzdo ‘d

S-linear Map (by the preceeding Lemma) from M @ S +>NE® S.
The existence of f* -~ £ ® 1s is guaranteed as by the theorem

MS -~ M®RS and NS = N ® RS. Now if £ is onto, that is
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M +.N > 0 is exact then tensoring we have M ®Ss > NgS~+ 0
and £ ® 1ls hence f* is onto. Now if f is 1-1 then Ker £ = 0

1

so Ker f* = 0 as if f*(md ~) = 0 then f(m)d_l = 0 so

f(m) =0, m = 0 so mdt = 0 and £* is 1-1.

Over a commutative integral domain every injective
module is divisible, every torsion-free divisible module is
L
injective. We need to find out what happens for rings in

general. (In particular for rings with right rings of

quotients)

Theorem 2.8: For R an arbitrary ring with identity,

every injective R-module is divisible.

Proof: Let M be an injective right R-module, meM and
deR, d regular. The correspondence dr + mr of dR into M
is well defined as d is not a zero divisor. If dr = dr'
then d(r-r') = 0 sor - r' =0 sor =1r'., This map is ob-
viously an R-homomorphism and therefore it can be extended
to an R-homomorphism ¢ from R to M as M injective. Suppo;e
o(1) = ml. Then mld = ¢(1d) - ¢(dl) = ml = m so if meM
there exists mleM such that mld =m so M Md so Md = M.

(Md <M as M an R-module) and M is divisible.

Corollary 2.81l: Every module is a submodule of a divi-

sible module.
Proof: Every module is a submodule of an injective
module by Lemma 1.7' and by the previous Theorem every in-

jective module is divisible.
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Theorem 2.9: Let R have right quotient ring S. The

following are equivalent: 1) Every torsion-free divisible
right R-module is injective. 2) S is semi-simple. (Here
semi-simple is definéd as in (4. pg. 12) and is equivalent
to every S-module is injéctive.)

Proof: Suppose 1) and let N be an S-module. Then by
2.7 M is a torsion-free R-module. Now since M is an S,
module, for any meM, deR d regular md-leM som = mld for
some mleMvand M = Md so.M.is divisible. Hence by hypothesis
M is R injective. Now let N, P be two S-modules and let

o
o be such that 0 - N »- P is exact and let B be such that

Since N and P are S-modules they are R-modules and o and B
are R-homomorphisms, so there\exists an R-homomorphism ¢:
P + M such that the diagram commutes since M is R injective.
By Lemma 2.75 ¢ is S-linear.

Hence M is injective and since M arbitrary every S-
module is injective so S is semi-simple. Suppose 2) that
is suppose S is semi;simple. Then every S-module is injective.
Let M be a torsion-free divisible R-module and let J bg an
R ideal and f an R-homomorphism from J to M. Now J is a
torsion-free R-module; hence, a submodule of an S—modulé
and so is M by Proposition 2.7. So f can be extended to an
S homomorphism f* of JS - MS = M as M divisible and torsion-
free; therefore, an S-module. Then since JS 2 S is injective
where ¢ is the natural map and M is injective by hypothesis

since it is an S-module, there exists a map f' which makes
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the 'following diagram commute.

- Js ?s
£x 7

v/ f
M
The restriction of f' to”R satisfies the requirements for
M to be R injective. K
The following theorem is given without proof:

Theorem 2.10: Let R have a two-sided quotient ring S.

Then the following are equivalent.
1) Every divisible right R-module is injective.
2) S is semi-simple and R is right hereditary.

Lemma 2.11: Let R have a right quotient ring S. If

every finitely generated, torsion-free, right R-module is a
submodlile of a free module then every finitely generated right
S-module is a submodule of a free S-module.

n
Proof: Let M= I m, S be a finitely generated S-
i=1
module. Then M is torsion-free as an R-module, since every

S-module is torsion-free as both an R and S module.
(Regular elements of both R and S are invertible in S) Let

n

Ml = 3 miR. Since every finitely generated torsion-free
i=1 ‘

right R-module is a submodule of a free module. Ml is a

submodule of a free R-module MZ' Consider M2 to be a

submodule of Mz(:)RS (which by proposition 2.7 then equals

MZS.) Since R(:) S ~ S, and since tensor products preserVe
R

direct sums, M S is a free S-module containing M =

n n
MS=M &S= ImR®S= m (R®S) = Ffms=
1 1 i=1 1 i=1 i i=1 i

M_S.
1
M

M ;@RaMz ©s : OR, ®S = AR, ®S) @S -
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e

(TF)' represents every finitely generated torsion-free right

module is a submodule of a free module.

Theorem 2.12: Let R have a two sided quotient ring S.

Then R satisfies (TF) if and only if every finitely generated
right S-module is a submodule of a free S-module.

Proof: If R satisfies (TF) then every funitely generated
right S-module is a submodule of a free S-module by Lemma
2.11 and if R has two-sided quotient ring then it has é
right quotient ring. We need to prove if every finitely
generated right S-module is a submodule of a free S-module
then R satisfies (TF). Every S-module is torsion-free as
both an R and an S-module. So the theorem could read R

n
satisfies (TF) iff S satisfies (TF). So let M = 3y m R
i=l i

be a finitely generated torsion-free right R-module. Con-

sider M to be a submodule of M é)RS. (Proposition 2.7)

n
Then MS = y m S (as in Lemma 2.11) m RE)S =
i=1l i 1—1 i :
F m (R(:) S) = g m S is a finitely generated S-module
i= l i i%1 i

and hence is a submodule of a free S-module by hypothesis.

Since each element has finite support each of the m 's can
i
be written as a combination of a finite number of basis

elements of this free module, we can assume that the free

module is finitely generated. Suppose the free module is

(K)

isomorphic to the direct sum S of K copies of S. 1In the

S-isomorphism MS-—)S(K) suppose m —> (S , S , ..., S ).
n n i 1 2 K

Then M = gmRZ ¥ (s1 5 o sieny SK ) R. Let d be a
i=1 i i=1 i i i
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common left denominatbr for the nk elements sj . That is,
i
let s. =d r. with d, r. € R by Lemma 2.5. Then
i
n -1 -1
y (a Lyor eeey d ry ) R = _
=1 i | i

(K)

(r

1 b

a3

W mEzg rk.) RCR
i i
a free R-module.

-

This compleres section 2. 1In this section it has been
shown that the torsion'elements of a right R-module form a
submodule if and only if R has a right quotient ring. Also
if R has a right quotient ring S then S is semi-simple if
and only if every torsion-free divisible right R-module is
injective. Toward the end of this section it was also shown
that if R has a two-sided quotient ring S, R satisfied (TF)

if and only if S did.
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Séction.3.

In the following work yet another torsion theory will
be studied with such questions in mind as, is the torsion
freeness of a module equivalent to the vanishing of its
torsion part, is it possible to divide any module into
its torsion-frée and torsion parts, and under what con-
ditions is the torsion-free as defined in this section

equivalent to the torsion theories of the other two sections.

In the following, let R be a ring with unit 1, and
let A be an R-left module on which 1 acts as the identity.
If r(\) denotes the right ideal of R consisting of the
right annihilator of AeR, then the subset r(A)A is so to

speak a priori torsion with respect to .

Definition: A is called torsion-free if, for every

AeR, Aa = 0 implies aer(A)A.

If 1(3) denotes the left ideal of left annihilators
of A then we have the following definition.

Definition: A is said to be divisible if for every
AeR 1(A) a = 0 implies aeAA. Similarly we could define
these for right modules. .

Consider the sequence R A R i R where the first
arrow ié the left multiplication by A, the second the
connonical injection. Tensoring with A over R yields
Ai®-LAR ® A ig'A where A® 1 is an epimorphiém with Kernel

r(A)A since 0 » r()) > R > AR =+ 0 is exéct so
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r(d) A > R®A >‘¥>|)\'R &@A - 0 is exact so Ker AxlA =
Im r(\) ®A in R A = A = r(A\) A. The composed map
(i®1) (A ® 1) is identified with left multiplication
by X in A.

Tor:L (R/AR, A) is t.he Kernel of i (X) 1A since
0> AR~ R > R/Ar - 0 is exact and from the properties of
tor we get the following exact - Torl_(AR, A) Torl(R, A) >

0

14

Torl(R/)\R, A) > AR®A~> R®A > RAREA and Torl(R, A)

as R projective and RE A x~ A so we have the following
£ ix)\ A
exact 0 ~» Torl(R_/AR, A) > \AR®A 2‘» A so Torl(R/AR, A)

113

Im £ = Ker i ® 1A from the exactness.

&)

So Tor, (R/AR, A) ~ Ker i(®)1Aa. since A "J' AR®A i@
where A®)| is a surjection. A/Ker M@l = AR ® A so
A/r(A)A ~ AR(® A so Tor; (R/AR, A) = Ker i & 1AC A/r())A.
Ker i ® /A = {aeA|ra = 0}/r(\)A as

a+r(d) A> ) xa~=>)a
A/r(A) A > \R®A » A
Ata + r(x)A) =0 iffda = 0 so Tor (R/AR, A) ~ {aeA|ra =

0}/r‘()\)A and hence

Proposition 3.1l: A is torsion free iff Torl(R/AR, A) =0

for every AeR.

Proof: 1If Torl(R/AR, A) = 0 for every MAeR then
AeR = {aeA|ra = 0}/r(A) A = 0 so if aeA such that da = 0
then a ¢ r(A)A and by definition A is torsion-free. Now
if A is torsion-free then{aeA|la = 0}/r()\) A = 0 as torsion-
free implies for each AeR we have a € r(A)A whenever 2a = 0.

So Torl(R/)\R, A) = {aeA|xa = 0}/r()) A = 0. Also
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Extt (R/RA, A) = {aeA'|1(i)a = 0}/AA. 0 > R\ » R+ R/R\ » 0 is
exact and from the properties of Ext we have 0 »- Hom (R/RA, A)~
Hom (R, A) - Hom (RA, A) - Ext’ (R/RA, A) ~» Ext’ (R, A) +» ...
But Hom (R, A) ~ A and Extl (R, A) = 0 as R projective so
we have 0 » Hom (R/R), A’ + A £ Hom (R)A, A) g Ext1 (R/R)A, A)~>

A : 1
0 exact. 8o Ext~ (R/RA, A) = Hom (RA, A) = Hom (R)A, A).
Ker g Im £

But 0 - 1(A) - R+ R\ - 0 is exact, so we get 0 ~»

Hom (R)A, A) E'Hom (R, A) g'Hom (L(r), A) - ... . So

Hom (RA, A) =~ Im f' = Ker g' = {aeA|l(A) a = 0} as

Hom (R, A) ~ A. If f € Hom (R, A) then f(1) = af and £ is

xa g'(f) Jjust restricts

determined by af, i.e., f£(x)

£f to 1()). That is g' (f) (x) xa ,'x € 1(A) so Ker g' =

£
{f ¢ Hom (R, A) |f restricted to 1(})

0} = =0
} {af € Alxaf

for all x € 1(A\)} = {aeA|l(A)a = 0}.
Now Im £ in the sequence 0 » Hom (R/RA, A) E Hom (R)A, A) g
Extl (R/RA, A) - 0 = )\A as, for aeA f(a) = g € Hom (R)A, A)
such that g(r\A) = (rA)a = r(iAa) for all reR. Now f(a) can
be identified with )a in the same manner as Hom (R, A) can

be identified with A. So Extl (R/RA, A) =~ Hom (RA, A) =
' Ker g

Hom (R/RA, A) = {aeA|l(A)a = 0}/)A and hence
Im £ -

1
Proposition 3.1': A is divisible iff Ext (R/RX, A) =0

for every xeR.

Definition: A left R module M is said to be flat if
whenever K: A » B is injective then K&®1l: A®M > B® M

is injective.
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Proposition 3.2: 1) A flat module A is always torsion-

free; 2) An injective module A is always divisible; 3) If
every left ideal of R is principal, then a divisible

module A is injective.

Proof 1): Let A be a flat R-module, then 0 -
| ' igx i
Torl (R/AR, A) » A\AR®A =~ A A is exact but 0 » AR ~ R is
exact so 0 - AR® A -i AR @A = A is exact so Ker i®1l =0

A
and since Torl (R/AR, A) = Ker i(ﬁ)lA, Torl (R/AR, A) s 0
and by Proposition 3.1, A is torsion-free.

Comment: Clearly if projective then flat, so pro-
jective is torsion-free. 2) Let A be an injective module,

then Extl (R/RX\, A) = 0 since 0 » R\ - R » R/R)A » 0 is

exact so 0 - Hom (R/RA, A) - Hom (R, A) 2' Hom (RA, A) -
Ext1 (R/R), A) -~ Extl (R, A) = 0. But Hom (..., A) A in-
jective is an exact contravariant functor (4, page 39) so
0 » Hom (R/RA, A) - Hom (R, A) i' Hom (RA, A) » 0 so j'
is a surjection and we have 0 ~» Ext1 (R/RA, A) - 0 exact
aﬂd so Extl (R/RA, A) = 0 and A is divisible by Proposi-
tion 3.1'. 3) Let A be a divisible R-module. Then if
for each left ideal L and each map £ € Hom (L, A) there
exists a map f' € Hom (R, A) such that f' is an extension
of £ then A is injective. Let L be a left ideal. Then we
have the exact sequence 0 -+ L i R - R/L - 0. Hom across
with A we get 0 » Hom (R/L, A) - Hom (R, A) i‘ Hom (L, A)-~
Extl (R/L, A) = 0. We have the 0 on the right because L

is principal and is therefore R\ for some AeR and A is
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5 il
divisible. Hence Hom (R, A) * Hom (L, A) » 0 and we
get i' a surjection. That is, for each f € Hom (L, A)
there exists f' € Hom (R, A) such that f' is an extension

of £ so A is injective.

Definition: An extension of R-modules (*)
0-+a% B > C > 0 (exact) is said to be pure if it has
one of the two following equivaient properties.
1) A B = AA for every AeR.
2) If A\C = 0 for some ceC, then there exists beB
such that B(b) = C and Ab = 0.
(in (1) A is identified with QA B.) These are equivalent
respectively tq
1 R/AR® A + R/AR ® B is a monomorphism for every
A€eR.
23 Hom (R/R), B) » Hom (R/RA, C) is an epimorphism

for every X\eR.

Proof: 1) » 2) Suppose A AB = A for all )eR.
If A\b € Ker B = A, Ab = a(la) for some a€A, so if Ac = 0

then pick beB such that B(b) = c¢. Now B(Ab) = AB(b)

Ac = 0, so A\b = a(Ma) for some acA. Consider A(b - a(a)) =
Ab = A(aa) = Ab - a(la) = Ab - \b =0, B(b - a(a)) =

B(b) - B(a(a)) = c - 0 =c as A = Ker B. So there exists

b_ € B such that A(bo)

e 0 and B(bo) = ¢ namely (b - a(a)).

2) » 1): Suppose AC = 0 for ceC implies there exists
some beB such that b = 0 and B(b) = c. . Clearly XA A AB

as A a submodule of B. Let af(a) €AB, that is a(a) = Ab for
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some beB, then B(a(a)) - B(A.b) = AB(b) = Ac = 0 for some
c in C. So by hypothesis there exists b'e B such that
Ab' = 0 and B(b') = c¢c. Now (b-b')e Ker B as B(b-b') =
B(b) = B(b') =c =-c=0so0ob -D>b' e A. So A(b-b') XA
but A(b-b') = Ab - Ab' = Ab as Ab' = 0 so Ab €)AA and

A AB = AA so A AB = )A.

1') » 1): If R/AR®A » R/ARE) B is a monomorphism
for every AeR, then since R/AREA =~ A/AA as 0 » AR ii;Y‘I'R f R/AR~>
0 exact gives AR &)A it RE®A z A - R/AR@® A + 0 exact
where i is the connonical injection, ¢ the connonical
surjection. So R/AR (®)A x A/ker ¢&L = A/Im iKl. Im i@l =
AA as i®l: AR&®A » A by i®l (Ar ®a) = Ara = Aa',

a' = ra, that is Im (i®l) = AR @A = ARA = AA as ARAC )\A
and R having unit gives ARA = AA. So R/AR® A = A/AA and
similarly R/AR@B ~ B/AB. So 0 - A/AA » B/AB is exact
for each AeR. So if aeA, a € AB then a + AB = 0. So
since a + Ab is image of a + AA, a + AA must be 0 also, so

a e MM so A ()AB = )\A for all AeR as AA C A () AB clearly.

I |
1) » 1'): If A NAB = )\A for every AeR then A/)A 3

B/AB is an injection for every AeR as if i'(a + AA) = 0
in B/AB then a € AB hence a ¢ \A so a + AA = 0 in A/)A ‘and
Ker i' = 0. So i' injective. Now since A/AA = R/AR® A
and B/AB * R/AR® B, R/AR X A l@i R/AR @& B is an injection

for each )\eR.
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2') » 2): Suppose Hom (R/RA, B) - Hom (R/RA, C) is

an epimorphism for every AeR. Now since if £ ¢ Hom (R/RA, B)

then £ is defined by what it does to (1 + R\A). That is

if reR £(R + RA) = rf(1 + RA\) = rb whére b=£f(14+ xr)\).
But 0 = £(A + R ) = Af(1 + RA) = AB so if f ¢ Hom (R/R\, B)
then f is identified with some beB such that A\b = 0 and we
have Hom (R/R\, B) = {beB|Ab = 0} and similarly for

ol A B
Hom (R/RA, C). So we get for AeR {beB|Ab = 0} > {ceC|rc =

0}

is a surjection, that is, for each ceC such that \Ac = 0 there

exists beB such that b = 0 and B'(b) = ¢ where B' = B re-

stricted to {beB|Ab = 0}.

2) - 2'): Suppose if AC = 0 ceC then there exists beB
* 1]

such that B(b) = ¢ and Ab = 0, then {beB|\b = 0} E

{ceC|Ac = 0} where B' is B restricted to {beB|Ab = 0} is a

Y

surjection for each AeR. But since {beB|Ab = 0}
Hom (R/RA, B) and {ceC|AC = 0} =~ Hom (R/R\A, C) then for

each AeR Hom (R/R)\, B) » Hom (R/R), C) is a surjection.

Proposition 3.3:

1) C is torsion-free if and only if every extension
(*) with C as the factor module is pure.

2) A is divisible if and only if every extension (%*)
with A as the Kernel is pure. ‘

Ptoof 1): For any extension (*) 0 A > B > C > 0

exact gives Torl(R/AR, A) > Torl(R/AR, B) ~» Torl(R/AR, Cc) ~»

R/AR @ A > R/AR ©®B ~ R/AR &) C + 0 exact. If C torsion-
free then Torl(R/AR, C) = 0 for all AeR so we have

0 *R/AR&®A > R/AR ® B for all AeR and (*) is pure by 1'.
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If (*) is pure for every extension (*) then we have
Tor (R/AR, B) =~ Torl (R/AR, C) * R/ R®A + R/ARE® B
but since (*) is pure we have Torl (R/AR, B) ~»
Tor, (R/AR, C) » 0 and if we take B projective as is

(R/AR, B)

|
o

permitted by reference 1 (pg. 7) we have Torl
so we gét TOrl'(R/AR, C) = 0 and by Proposition 3.1 C
is torsion-free.

1 >
Proof 2): If A is divisible then Ext (R/RA, A) = 0

for all AeR so for any extension (*) 0 > A > B > C » 0

exact gives 0 - Hom R/R), A) - Hom (R/RA, B) - Hom (r/R , C)~
Extl (R/RA, A) exact. But since A divisible Ext1 (R/RA, A) =0
so we have Hom‘(R/RA, B) » Hom (R/RA, C) » 0 for all XeR

and by 2' (*) is pure. If for any extension (*) 0 - A - B ~»
cC~»>0 exact_(*) is pure then Hom (R/R\A, B) » Hom (R/R)A, C) = O
is exact and 0 - Hom (R/RA, A) - Hom (R/R)A, B) - Hom (R/R)A, C) =~
Ext’ (R/RA, A) » Ext (R/RA\, B) - . . . is exact. But

these two gives us 0 ~» Extl (R/R\, A) =~ Extl (R/R)X, B) *

aﬁd taking B to be injective (1, pg. 9) we have

Extl (R/RA, B) = 0 so Extl (R/R)\, A) 0 and A is divisible

by Proposition 3.1'.

As a corollary we have the equivalence of the following
three statements:

a) Every extension (*) is pure.

b) Every module is torsion-free.

c) Every module is divisible.
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Now we will look at submodules, factor modules, etc. of

torsion-free or divisible modules.

Proposition 3.5:

1) An estension of a torsion-free module by a torsion-
free module yields always a torsion-free module.

2) Also an extension of a divisible module by a
divisible module yields a divisible module.

Proof 1): Suppose we have 0 - A - B > C » 0 exacf with
A and C torsion-free. fhen we get - Torl (R/AR, A) -~
Tor, (R/AR, B) - Tor | (R/AR, C) > R/AR®A » R/ R®B ~»
R/AR ® C + 0 exact for all AeR but since A and C torsion-
free Torl (R/AR, A) = Torl (R/AR, C) = 0 for every AeR.

This gives Tor. (R/AR, B) = 0 for all AeR so B is torsion-

1
free.
Proof 2): Suppose we have 0 - A - B » C » 0 exact with
A and C divisible. Then we have 0 - Hom (R/RA, A) -~
Hom (R/RA, B) - Hom (R/RA, C) - Extl (R/RA, A) - Ext! (R/RA, B)~
Extl (R/RA, C) » . . . exact. But Extl (R/RA\, A) =
Extl (R/RA, C) = 0 for all AeR as A and C divisible so we
have Extl (R/RA, B) = 0 for every AeR and B is therefore

divisible.

If C is a factor module of B, we have an exact sequence
of the type (*) with o the connonical injection B the
connonical surjection and A the kernel of B. 0 -~ A $B E cC +
0. Such a sequence will be called_"asso;iated" with B -+ C.

Similarly, if A is a submodule of B, we have an exact sequence
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of the type (*) with a the connonical injection, the
connonical surjection and C the cokernel of a.

a B
0 >A~>B~>C~> 0. Such a sequence will be called

"associated" with A - B.

Proposition 3.6:

l) A factor module C of a torsion-free module B is
torsion-free if and only if the associated exact sequence
(*) is pure.

2) Similarly, a sﬁbmodule A of a divisible module B
is divisible if and only if the associated sequence (*) is
pure.

Proof 1): If C torsion-free the associated sequence is
pure by Proposition 3.3. If the associated sequence
0 A ~>B~>C~+> 0 is pure then we have for every AeR

1

R/AR &£ A - R/AR& B + R/AR & C + 0 exact. Now Torl (R/AR, B) =0

for every AeR as B torsion-free and using 1' in the defini-

Torl (R/AR, A) » Tor, (R/AR, B) = Tor1 (R/AR, C) -~

tion of pure we get Torl (R/AR, C) = 0 for every AeR and
hence C is torsion-free.
Proof 2): If A is divisible then by Proposition 3.3 the
associated sequence is pure. If the associated sequence is
pure and B is divisible then we get for each AeR
0 - Hom (R/RA, A) - Hom (R/RA, B) - Hom R/R), C) - Extl (R/RA, A)~>
Extl (R/R\, B) =~ Ext1 (R/R , C) . . . exact. But |
Extl (R/RX\, B) = 0 for every AeR as B divisible and using 2'

1

in the definition of pure we get Ext~ (R/RA, A) = 0 for every

AeR hence A is divisible.
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. We shall call a ring R a left PP [respectively PF]
ring if every principal left ideal of R is projective
[respectively flat]. A right PP [respectively PF] ring

is defined similarly.

Lemma 3.7: A PP ring is a PF ring.

Prdof: Lef R be a left PP ring. Then every principal
left ideal of R is projective. Let M be a principal left
ideal of R and 0 - A » B » B/A 0 exact for modules A and
(B, M) » Tor

B. Then we get - Tor1 (A, M) » Tor (B/A, M)~

& 1

A®M > B®M exact. But Tor, (B/A, M) = 0 as M projective
by comment in proof Proposition 3.2, so we get

0 >A®M~> B ®M exact and M is flat.

1
Lemma 3.7': Ext (P, A) = 0 for all A iff P is pro-

jective. If P projective Extl (P, A) = 0. Now if

Extl (P, A) = 0 for every A, look at 0 > F - G - H »~ 0 exact.
Then get 0 » Hom (P, F) - Hom (P, G) - Hom (P, H) -~
Extl (P, F) = 0. So ¢ a surjection, so P projective.

Lemma 3.8: Tof (AR, C) = 0 for all C if and only if
AR is flat. '

Proof: If AR is flat and given C, then C can be put
into the exact sequence 0 - K - P » C » 0 with P projective
and we have Torl (AR, P) =~ Tor1 (AR, C) » AR ®K $ AR &) P.
But Tor. (AR, P) = 0 as P projective. Kernel ¢ = 0 as AR

1

flat. So we have 0 - Torl (AR, C) - 0, that is Tor1 (AR, C)

0.
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Now. suppose Tor1 (AR, C) = 0 for all C and let
0> B~>C->C/B > 0 be exact. Then we have Torl (AR, C/B) ~
AR® B » AR ® C. But by hypothesis Torl (AR, C/B) = 0.

So AR is flat.

Proposition 3.7: 1) In order that any submodule of a

torsion-free léft module be again torsion-free, it is
necessary and sufficient that R be a right PF ring.

2) In order that any factor module of a divisible left
module be again divisible, it is necessary and sufficient
that R be a left PP ring.

Proof 1l): Let B be torsion-free, and let A be a sub-
module of B and suppose that R is a right PF ring. Then
every principal right ideal of R is flat. Looking at the

associated sequence 0 -+ A - B - C » 0 we get ~» Tor2

Torl (R/AR, A) =~ Torl (R/AR, B) »+ ; but since B torsion-
free, Torl (R/AR, B) = 0. Also we have 0 - AR - R/AR > 0

so we get Tor, (R, C) » Tor_, (R/AR, C) =~ Tor1 (AR, C) »

2 2

Térl (R, C) » exact. Now Tor2 (R, C) = Torl (R, C) =0

as R projective and so we have 0 - Tor2 (R/ R, C) ~»

Torl (AR, C) - 0.

AR is a principal right ideal and hence by hypothesis

is flat and so by the preceeding lemma Torl (AR, C) = 0 and
hence Tor2 (R/AR, C) =~ Torl (AR, C) = 0. Now this gives
0 ~» Torl (R/AR, A) > 0 hence Torl (R/AR, A) = 0 and since

R is flat for each AeR, Tor., (R/AR, A) = 0 for each AeR,

1

hence A is torsion-free.

(R/)\Rl C)~»
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Now suppose any submodule of a torsion-free module
is torsion-free and let AR be a principal right ideal of R.

Also let C be ahy module. By the lemma we want

Torl (AR, C) = 0. Now given C we can imbed C in an exact

sequence 0 - A - P » C » 0, with P projective. P is there-

fore torsion-free (Tor (R/AR, P) = 0 for all AeR) hence

1
by hypothesis A is torsion-free and we get the exact sequence

Tor2 (R/AR, P) ~» Tor2

But both ends are 0 as P projective so Tor2 (R/AR, C) =

(R/AR, C) - Tor, (R/AR, A) > Tor; (R/AR, P).

Tor1 (R/AR, A) = 0 as A torsion-free. Also we have
0> AR~>R~>R/ R+ 0 exact so we have Tor2 (R/AR, C) ~»
Tor, (AR, C) ~ Torl (R, C) = 0 as R projective so Torl (AR, C) = C

Since C was arbitrary AR is flat and since )\ was arbitrary
any principal right ideal of R is flat and hence R is a PF
ring.

Proof 2): Let C be a factor module of a divisible
module B and suppose R is a left PP ring. Then every prig—
cipal left ideal is projective. Looking at the associated
exact sequence 0 + A -+ B - C » 0, we get Extl (R/RA, B) ~»
Extl (R/RA, C) ~» Ext2 (R/RXA, A), but Extl (R/RA, B) = 0 as
B divisible. Also considering 0 - R > AR = R/RA + 0 we get

2
1 (RA, A) » Ext® (R/RA, A) - Ext> (R, A)

Ext1 (R, A) » Ext
exact. But both ends are 0 as R projective so we get

0 = Ext1 (RA\, A) = Ext2 (R/RA, A) as RA is a principal left
ideal and therefore projective. Now we get 0 - Extl (R/RA, C)~

0. So Extl (R/RA, C) = 0 so C is divisible.
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Now suppose ever& factor module of a divisible left

module is divisible. Let-RA be a principal left ideal and
let A be any left R-module. By Lemma 3.7' we want
Extl (R, A) = 0. Now A can be imbedded in a sequence
0 >A~+B~>C > 0 with ﬁ.injective, so B is divisible
(Propositien 3.2, 2) and by hypothesis so is C. Now we
have the exact sequence Extl (R, A) ~» Extl (B , A) -

Ext? (R/RA, A) - Ext2

(R, A) with both ends 0 as R projective
so Extl (RA, A) = Ext2 (R/RA, A) = 0 as we have the exact
sequence 0 = Extl (R/RA, C) =~ Ext2 (R/RA, A) ~ Ext2 (R/RA, B) =
0. The left side is 0 as C divisible and the right side is

0 as B injective (4, pg. 50). Now since A arbitrary

Extl (RA\, A) = 0 for every A hence R is projective and

since A arbitrary, each principal left ideal is projective

hence R is a left PP ring.

Proposition 3.8: 1) A direct sum of torsion-free

modules is torsion-free.

2) In order that a direct product of torsion-free
modules be always torsion-free, it is necessary and
sufficient that for every AeR, the right annihilator r ()
be finitely generated.

Proof 1): Let {AY}YEP be a collection of torsion-
free modules. Let A = IAy. Torl (R/AR, A) = Torl (R/AR, A ) =
YeT
Z? = 0 as (1 pg. 107, Prop. l.2a) Tor commutes with direct
YE

sums and from the property of torsion-free modules

Torl (R/AR, A) = 0 for each AeR if A is torsion-free.
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Proof 2): Let {AY}YeP bé a collection of torsion-
free modules, and let A = Yg%. Suppose for every AeR,
r(A) is finitely generated and let aeA such that a = 0.
This implies AaY = 0 for every yvel', that is a = (a;é €A,
ayehy. Now by hypothesis r(\) is generated by a finite
number of elements, say uj;»nu.. Now since A torsion-
free for each y and since AaY =0, aY e r(A)A , so there

exists aiY ieI, aiYeA.Y such that aY = lZIulalY Letting

a; = (aiYir € A we have.igluiai = lZIul(a Y = (ZuiaiY) =
(aY) = a. But Zuiai e (M)A so a € r(A)A so A is torsion-
free. |

To prove the converse suppose that a direct product

of torsion-free modules is always torsion-free. Now for

AeR take the direct product AX = I R, of isomorphic
ae [(A)

copies Ry of R over the index set r(A). Let a, be the
"diagonal" element of AA having oth component o for every
o € r(A). Then Aax = 0, so since A, is torsion-free, that
is, the direct product of torsion-free modules R, =R

which by hypothesis is always torsion-free, aj € r(i)Aa,,

that is, a, = Zulal for some finite number of elements

u, of r(\), and a; (aia) of Ay (i=1...r). This is

to say, for each a ¢ r(k), o = Zuiaia where a;, 1is the ath
component for each i =1, ..., r which means r(\) is

finitely generated. (the ui's do it).

Proposition 3.8': A direct'product as well as a direct

sum of divisible modules is divisible.
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Proof: Letfhy}Y;F be a collection of divisible mo&ules
and let A = @ Ay and A' = [IAy. Let aeA, a = + -
such that L(A) a = 0. Then /(A) ay = 0 for each y so
ay € My as Ay is divisible so a ¢ @ My = XA + Ay = AA,
so A is divisible. -

Now let aeA', a = (ay)Yer such that ¢(X)a = 0. Then
X(\)ay = 0 for each y so ay € AAy as Ay divisible for
each y. So a = (Aby)Yer for some by € Ay. So

_ : V2 N
a A(by)Yer € AM' so A' is divisible.

Proposition 3.9: If R is a left PP-ring, then every

right R-module possesses the "largest" torsion-free factor
module, and every left R-module possesses the "largest"
divisible submodule.

Proof: Let M be a right R-module. Then R\ is a
principal left ideal and since R is a left PP-ring, RA is
projective. But then Z(x) is finitely generated so the
direct product of right torsion-free modules is torsion-free.
Let {M/Ta} be the collection of all torsion-free factor
modules of M. Then Ha M/Ta is torsion-free. But considering
MAQTa we see that f: Mﬂ]Ta > I M/T defined by x +/]Ta ->
(x + Ta) is an injection since if (x + Ta)a = 0 then
X € Ta for all o so x € ()Ta so x + f)Ta = 0. So we have
M/ﬂTa is a submodule of HM/Ta and by the mirror statement of
the first part of Proposition 3.7 and the fact that PP » PF
we have MﬂﬂTa is torsion-free. Now we claim that Mﬂ)Ta is
the largest torsion-free factor module of M. Since if M/T'

is any factor module of M, T' ¢ {Ta} so (N TaC: T' so M/T'
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is émaller than M/nTa' Let M be a left R-module and {Ma}
be the collection of all divisible submodules of M. Then
by Proposition 3.8' the direct sum, C)Ma’ is divisible
but IM is a factor module of @Ma as f: @M, ~ M defined
by (xa)a g @ > IX, is a surjection. So by the second part

© . a€a

of Proposition 3.7, IM, is divisible. Clearly IM, is the

largest divisible submodule.

Definition: A lefp module A will be called torsion if

Hom (A, C) = 0 for every torsion-free module C.

Proposition 3.10: 1) The direct &nn,C) A, is a torsion

module if and only if every summand A, is a torsion module

2) If A is a torsion module, then so is any homomorphic
image of A.

3) Any extension of a torsion module by a torsion
module yields again a torsion module.

Proof 1): If @Aa is a torsion module then Hom (@a' c) =0
for all C torsion-free. IIHom (Aa' C) =~ Hom «EAG, C) = 0 for
each o and all C torsion-free so for each a, Aa is torsion.
Conversely if {A_ } is a collection of torsion modules
Hom (Aa' C) = 0 for eéch o and all C torsion-free) then
0 =aHHom (A,, C) = Hom «S)Aa, C) for all C torsion free so
Cma is torsion.

Proof 2) Let A' be a homomorphic image of A by f.

A E A' and look at Hom (A', C) for any C torsion-free. Let
h ¢ Hom (A', C) and xeA'. Then x = f(a) for some aeA so h(x) =

h(f(a)) = (f o h) (a) = 0 as £ o h is a homomorphism from

A > C and A' is torsion.
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Proof 3): Suppoée we have 0 > A > B> C » 0 with A and
C torsion and suppose D is any torsion-free module. Then
from the properties of Hom we get Hom (C, D) » Hom (B, D) -
Hom (A, D) exact. But both ends are 0 as C and A torsion
so Hom (B, D) = 0 and siﬁce D arbitrary, B is a torsion

module.

Corollary 3.10: A module A has the largest torsion
submodule. |
Proof: Let {A } be the collection of all torsion sub-
modules of A. Then C)Aa is torsion by the first part of
the preceeding proposition. But ZAa is the homomorphic image
of @)Aa as in the second part of Proposition 3.9 so by
second part of Proposition 3.10, EAa is torsion. Clearly

it is the largest torsion submodule of A.

We call the largest torsion submodule of A the torsion

submodule of A, and denote it by T(A).

A reduced module C is defined by the property that

Hom (A, C) = 0 for every divisible module A.

Proposition 3.10': 1) The direct product HCa is a
reduced module if and only if every Ca is reduced.

2) If C is reduced, then so is any submodule of C.

3) Any extension of a reduced module by a reduced
module yeilds again a reduced module. _

Proof 1): 1If Ca is reduced.then Hom (A, Hca) = 0 for
every divisible A. But Hom (A, HCa) = JI[Hom (A, Ca) =-0 so

Hom (A, C,) = 0 for each o and every divisible A. So C, is
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reduced for each a. If for each a, C is reduced then

Hom (A, Cq) = 0 for each divisible A. Then Hom (A, IC,)
ITHom (A, C,)) = 0 for each divisible A so IC, is reduced.
Proof 2): Let C' be a submodule of C. We get

0O-+C'>C~>C/C'" » 0 exact. Then for an A divisible we

Il
o

have 0 - Hom (A, C') » Hom (A, C) exact. But Hom (A, C)
so Hom (A, C') = 0 so C' is reduced.

Proof 3}z Let 0+ C = C" +» €' 4 0 be exact with C and
C' reduced. Let A be any divisible module. Then we have

Hom (A, C) » Hom (A, C') - Hom (A, C") exact. Now both ends

are 0 as C and C" are reduced so Hom (A, C') = 0 so C' is
reduced.
Corollary 3.10': Among submodules B of A with reduced

factor modules there exists the smallest one, which we denote
by D(A).

Proof: Let {By} be a collection of submodules of A such
that A/B, is reduced. Let By = D. Then A/D is reduced ds
0 » A/D » IIA/B, is an injection, x + D (x + By)qg, SO

A/D ]IA/Ba which is reduced.

Proposition 3.11: If R is a PF ring, A is a torsion

module if and only if it has only the trivial torsion-free

factor A/A. |
Proof: Let R be a PF ring and suppose A is a torsion

module. Then a submodule of a torsion-free module is torsion

free and Hom (A, C) = 0 for every torsion-free module C.
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Suppose A has a non—t;ivial factor module A/B torsion-free.
That is B # A. Then Hom (A, A/B) # 0 with A/B torsion-free
so A not torsion which is a contradiction. Let R be a PF
ring and suppose A is a ﬁodule with only torsion-free factor
A/A. Let T be'a torsion;free module and let ¢ ¢ Hom (A, T).
o(a) = A/Ker ¢ and ¢ (A) is torsion-free as it is a submodule
of T. But this implies A/Ker ¢ = A/A that is Ker ¢ = A which

means ¢ = 0 so Hom (A, T) = 0 so A is torsion.

Proposition 3.12: If R is a PP ring, C is reduced if

and only if it has only the trivial divisible submodule 0.
Proof: Let R be a PP ring and let C be reduced. Suppose
C has a non-trivial divisible submodule B. Then Hom (B, C) # 0
as the inclusion map is in Hom (B, C). But this contradicts
C being reduced, that is B = 0. Let R be a PP ring and let C
be a module whose only divisible submodule is 0. Let B be a
divisible module and let ¢ ¢ Hom (B, C). Then ¢(B) is a
submodule of C, but (B) ~ B/Ker ¢ a factor module of B hernce
divisible so ¢(B) is a divisible-submodule of C, hence ¢(B) = 0

so ¢ = 0 so Hom (B, C) = 0. Since B was arbitrary, C is reduced.

If R is a commutative integral domain, our definitions

of torsion modules and reduced modules coincide with the

]
usual ones.

i

Proposition 3.13: Let R be a commutative integral domain.

If Hom (A, C) = 0 for every torsion-free module C then for

each acA there exists AeR such that Xa = 0.
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Proof: Suppose there exists acA such that la # 0 for
any xeR, » # 0. Then we get a homomorphism £f: R, » A and f
injective. Also we have a map Ra - R + I where I is the
field of fractions of R so we have

0 > Ra + A since I injective
.,‘ : l+/¢

So we have a map ¢ such that ¢ o« £ =i # 0 so ¢ # 0 and

Hom (A, I) # 0 since I torsion-free A is not torsion-free.

Proposition 3.14: If for each atA there exists AeR,

A # 0 such that Aa = 0 then Hom (A, C) = 0 for any torsion
free C.

Pfoof: Let C be torsion-free and let f € Hom (A, C)
and aeA, A # 0. Then there exists X # 0, AeR such that

aa = 0. f(a) = £( a) = 0 and since C torsion-free

f(a) = 0 implies f(a) 0 so £f =0 so Hom (A, C) = 0.

Let t(A) denote the set of torsion (Levy Sense) (5)
elements of A.

Lemma 3.15: If R has the left quotient ring Ql' t(Aa)

is a submodule of A and coincides with the kernel of the
natural mapping A Qi & A.
Proof: t(A) is a submodule of A by Theorem 2.6. If
1 &a =0 then da = 0 for some d regular in R as in the
proof of Proposition 2.7. If a is Levy Sense torsion then
da = 0 for some d regular in R so 1®a = d_]'@da =al®o=o0
in 0, @aA. =

Proposition 3.16: For a (not necessarily commutative)
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integral domain R, the following statements are equivalent.

1) R has the left quotient ring Q

2) For any left module A, we have T(A) = t(A)

3) For any A # 0, every element of R/RA is a torsion

element. -

Proofi: 1+ 2: By Lemma 3.15 t(A) is a submodule of
A and since it is torsion in the usual sense, hence also
in Hattori's sense (3) and since T(A) is the largest
Hattori sense torsion submodule of A, t(A) CCT(A). On the
other hand, A/t (A) is torsion-free in the usual sense |
hence also in Hattori's sense since R has no zero divisors.
So by definition Hom T(A), a/t(A) = 0, that is, T (A) ~t(A)
so T(A) = t(A).

2 > 3: It is clear that Hom (R/RA, C) = 0 for AeR*
where R* is the set of regular elements of R and for any
torsion-free C, (Hattori's sense) that is, R/R\ is a torsion
module in Hattori's sense. If we let A = R/R\ then T(A) =
R/RA, but T(A) = t(A) by 2 so R/RA\ = t(R/R\), so each elément
of R/RA is a torsion element in Levy sense.

3 =»+1: Let \AeR*, that is, A # 0, and let ueR, then
U+ R X eR/R\ hence torsion by 3 so there exists aeR* such
that au + R\ = 0. That is ueR) which means there exists
BeR, such that ou = BA. So for each AeR*, ueR there ekists
oeR*, BeR, such that gu = B)A so R has a left quotient ring
by Theorem 2.2. .

If A is torsion-free then T(A) = 0 as Hom (T(A), A) =0
implies T(A) = 0 since the identity map is a homomorphism

from T(A) into A and the only way for the identity map to be



55

0 is for T(A) to be.O.

If T(A) = 0 A is not necessarily torsion-free as the

following counter example shows.

Let R = 2/4%Z and let A = 22/4Z. Then T(A) = 0 but
A is not torsion free as 2¢R, 2.2 = 0 but 2er(2) A as

r(2)a = {0}.
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